IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i7p1838-d343796.html
   My bibliography  Save this article

Miocene Biogas Generation System in the Carpathian Foredeep (SE Poland): A Basin Modeling Study to Assess the Potential of Unconventional Mudstone Reservoirs

Author

Listed:
  • Krzysztof Sowiżdżał

    (Oil and Gas Institute—National Research Institute, 25A Lubicz Str., 31-503 Krakow, Poland)

  • Tomasz Słoczyński

    (Oil and Gas Institute—National Research Institute, 25A Lubicz Str., 31-503 Krakow, Poland)

  • Anna Sowiżdżał

    (Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Bartosz Papiernik

    (Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland)

  • Grzegorz Machowski

    (Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Krakow, Poland)

Abstract

This paper presents the results of a research project aimed at evaluating the unconventional natural gas potential of the autochthonous Miocene sediments in the Polish part of the Carpathian Foredeep. The primary objective of the study was to re-evaluate the biogenic gas generation system within Miocene sediments, paying special attention to unconventional gas resources accumulated in tight mudstone formations. The four-dimensional (4D) petroleum system modeling method (PetroMod software) was used to reconstruct the basin geometry and three-dimensional (3D) evolution through a geological timescale, in particular the progress of gas generation, migration, and accumulation processes, as well as their consequences for gas exploration and development. Special attention was paid to the dynamics of gas generation processes and the advancement of sediment compaction and their time dependence, as well as to the progress and outcomes of gas migration and accumulation processes. The results indicate significant potential for unconventional gas accumulations in mudstone reservoirs. However, part of the biogenic gas resources occurs in a dispersed form. Analysis of the dynamics of biogenic gas generation and accumulation conducted on a basin scale and within particular sedimentary complexes and depth intervals allowed an indication of the premises regarding the most favorable zones for mudstone–claystone reservoir exploration.

Suggested Citation

  • Krzysztof Sowiżdżał & Tomasz Słoczyński & Anna Sowiżdżał & Bartosz Papiernik & Grzegorz Machowski, 2020. "Miocene Biogas Generation System in the Carpathian Foredeep (SE Poland): A Basin Modeling Study to Assess the Potential of Unconventional Mudstone Reservoirs," Energies, MDPI, vol. 13(7), pages 1-26, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1838-:d:343796
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/7/1838/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/7/1838/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McGlade, Christophe & Speirs, Jamie & Sorrell, Steve, 2013. "Unconventional gas – A review of regional and global resource estimates," Energy, Elsevier, vol. 55(C), pages 571-584.
    2. Viet Nguyen-Le & Hyundon Shin & Edward Little, 2020. "Development of Shale Gas Prediction Models for Long-Term Production and Economics Based on Early Production Data in Barnett Reservoir," Energies, MDPI, vol. 13(2), pages 1-17, January.
    3. Yapei Ye & Shuheng Tang & Zhaodong Xi, 2020. "Brittleness Evaluation in Shale Gas Reservoirs and Its Influence on Fracability," Energies, MDPI, vol. 13(2), pages 1-22, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Chmielowska & Anna Sowiżdżał & Barbara Tomaszewska, 2021. "Prospects of Using Hydrocarbon Deposits from the Autochthonous Miocene Formation (Eastern Carpathian Foredeep, Poland) for Geothermal Purposes," Energies, MDPI, vol. 14(11), pages 1-28, May.
    2. Grzegorz Zimon & Marek Sobolewski & Grzegorz Lew, 2020. "An Influence of Group Purchasing Organizations on Financial Security of SMEs Operating in the Renewable Energy Sector—Case for Poland," Energies, MDPI, vol. 13(11), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
    2. Griffiths, Steven, 2017. "A review and assessment of energy policy in the Middle East and North Africa region," Energy Policy, Elsevier, vol. 102(C), pages 249-269.
    3. Tunstall, Thomas, 2015. "Iterative Bass Model forecasts for unconventional oil production in the Eagle Ford Shale," Energy, Elsevier, vol. 93(P1), pages 580-588.
    4. Ikonnikova, Svetlana & Gülen, Gürcan & Browning, John & Tinker, Scott W., 2015. "Profitability of shale gas drilling: A case study of the Fayetteville shale play," Energy, Elsevier, vol. 81(C), pages 382-393.
    5. Watson, Jim & Gross, Rob & Ketsopoulou, Ioanna & Winskel, Mark, 2015. "The impact of uncertainties on the UK's medium-term climate change targets," Energy Policy, Elsevier, vol. 87(C), pages 685-695.
    6. Gülen, Gürcan & Browning, John & Ikonnikova, Svetlana & Tinker, Scott W., 2013. "Well economics across ten tiers in low and high Btu (British thermal unit) areas, Barnett Shale, Texas," Energy, Elsevier, vol. 60(C), pages 302-315.
    7. Wang, Jianliang & Mohr, Steve & Feng, Lianyong & Liu, Huihui & Tverberg, Gail E., 2016. "Analysis of resource potential for China’s unconventional gas and forecast for its long-term production growth," Energy Policy, Elsevier, vol. 88(C), pages 389-401.
    8. Zou, Youqin & Yang, Changbing & Wu, Daishe & Yan, Chun & Zeng, Masun & Lan, Yingying & Dai, Zhenxue, 2016. "Probabilistic assessment of shale gas production and water demand at Xiuwu Basin in China," Applied Energy, Elsevier, vol. 180(C), pages 185-195.
    9. Guo, Hongguang & Zhang, Yujie & Zhang, Yiwen & Li, Xingfeng & Li, Zhigang & Liang, Weiguo & Huang, Zaixing & Urynowicz, Michael & Ali, Muhammad Ishtiaq, 2021. "Feasibility study of enhanced biogenic coalbed methane production by super-critical CO2 extraction," Energy, Elsevier, vol. 214(C).
    10. Speirs, Jamie & McGlade, Christophe & Slade, Raphael, 2015. "Uncertainty in the availability of natural resources: Fossil fuels, critical metals and biomass," Energy Policy, Elsevier, vol. 87(C), pages 654-664.
    11. Lu, Yiyu & Chen, Xiayu & Tang, Jiren & Li, Honglian & Zhou, Lei & Han, Shuaibin & Ge, Zhaolong & Xia, Binwei & Shen, Huajian & Zhang, Jing, 2019. "Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation," Energy, Elsevier, vol. 172(C), pages 270-285.
    12. Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
    13. Lu, Yiyu & Xu, Zijie & Li, Honglian & Tang, Jiren & Chen, Xiayu, 2021. "The influences of super-critical CO2 saturation on tensile characteristics and failure modes of shales," Energy, Elsevier, vol. 221(C).
    14. Yang, Zaifu & Zhang, Rong & Zhang, Zongyi, 2016. "An exploration of a strategic competition model for the European Union natural gas market," Energy Economics, Elsevier, vol. 57(C), pages 236-242.
    15. Yang, Ruiyue & Hong, Chunyang & Huang, Zhongwei & Song, Xianzhi & Zhang, Shikun & Wen, Haitao, 2019. "Coal breakage using abrasive liquid nitrogen jet and its implications for coalbed methane recovery," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    16. Saif, Tarik & Lin, Qingyang & Butcher, Alan R. & Bijeljic, Branko & Blunt, Martin J., 2017. "Multi-scale multi-dimensional microstructure imaging of oil shale pyrolysis using X-ray micro-tomography, automated ultra-high resolution SEM, MAPS Mineralogy and FIB-SEM," Applied Energy, Elsevier, vol. 202(C), pages 628-647.
    17. Trobajo, J.R. & Antuña-Nieto, C. & Rodríguez, E. & García, R. & López-Antón, M.A. & Martínez-Tarazona, M.R., 2018. "Carbon-based sorbents impregnated with iron oxides for removing mercury in energy generation processes," Energy, Elsevier, vol. 159(C), pages 648-655.
    18. Gracceva, Francesco & Zeniewski, Peter, 2013. "Exploring the uncertainty around potential shale gas development – A global energy system analysis based on TIAM (TIMES Integrated Assessment Model)," Energy, Elsevier, vol. 57(C), pages 443-457.
    19. McGlade, Christophe & Speirs, Jamie & Sorrell, Steve, 2013. "Methods of estimating shale gas resources – Comparison, evaluation and implications," Energy, Elsevier, vol. 59(C), pages 116-125.
    20. Sheridan Few & Ajay Gambhir & Tamaryn Napp & Adam Hawkes & Stephane Mangeon & Dan Bernie & Jason Lowe, 2017. "The Impact of Shale Gas on the Cost and Feasibility of Meeting Climate Targets—A Global Energy System Model Analysis and an Exploration of Uncertainties," Energies, MDPI, vol. 10(2), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:7:p:1838-:d:343796. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.