IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i10p2766-d552768.html
   My bibliography  Save this article

Improving the Irradiance Data Measured by Silicon-Based Sensors

Author

Listed:
  • Riyad Mubarak

    (Institute for Meteorology and Climatology, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany)

  • Holger Schilke

    (Institute for Meteorology and Climatology, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany)

  • Gunther Seckmeyer

    (Institute for Meteorology and Climatology, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany)

Abstract

Silicon-based sensors are widely used for monitoring solar irradiance, in particular, in the field of Photovoltaic (PV) applications. We present a method to correct the global horizontal irradiance measured by silicon-based sensors that reduces the difference to the standard thermopile sensor measurements. A major motivation to use silicon-based sensors for the measurements of irradiance is their lower cost. In addition, their response time is much lower, and their spectral response is much closer to that of the PV systems. The analysis of the differences is based on evaluating four parameters that influence the sensor measurements, namely the temperature, cosine error, spectral mismatch, and calibration factor. Based on the analysis, a correction model is applied to the silicon sensors measurements. The model separates measurements under a clear sky and cloudy sky by combining the clearness index and the solar zenith angle. By applying the correction model on the measurements of the silicon-based sensor, the differences between sensor readings have been reduced significantly. The relative root mean squared difference (rRMSD) between the daily solar irradiation measured by both sensors decreased from 10.6% to 5.4% after applying the correction model, while relative mean absolute difference (rMAD) decreased from 7.4% to 2.5%. The difference in total annual irradiation decreased from 70 KWh/m 2 (6.5%) to 15 kWh/m 2 (1.5%) by the correction. The presented correction method shows promising results for a further improvement in the accuracy of silicon-based sensors.

Suggested Citation

  • Riyad Mubarak & Holger Schilke & Gunther Seckmeyer, 2021. "Improving the Irradiance Data Measured by Silicon-Based Sensors," Energies, MDPI, vol. 14(10), pages 1-19, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2766-:d:552768
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/10/2766/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/10/2766/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Riyad Mubarak & Martin Hofmann & Stefan Riechelmann & Gunther Seckmeyer, 2017. "Comparison of Modelled and Measured Tilted Solar Irradiance for Photovoltaic Applications," Energies, MDPI, vol. 10(11), pages 1-18, October.
    2. Riyad Mubarak & Eduardo Weide Luiz & Gunther Seckmeyer, 2019. "Why PV Modules Should Preferably No Longer Be Oriented to the South in the Near Future," Energies, MDPI, vol. 12(23), pages 1-16, November.
    3. Ana Maria Gracia Amillo & Thomas Huld & Paraskevi Vourlioti & Richard Müller & Matthew Norton, 2015. "Application of Satellite-Based Spectrally-Resolved Solar Radiation Data to PV Performance Studies," Energies, MDPI, vol. 8(5), pages 1-34, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hakim Azaioud & Jan Desmet & Lieven Vandevelde, 2020. "Benefit Evaluation of PV Orientation for Individual Residential Consumers," Energies, MDPI, vol. 13(19), pages 1-24, October.
    2. Psiloglou, B.E. & Kambezidis, H.D. & Kaskaoutis, D.G. & Karagiannis, D. & Polo, J.M., 2020. "Comparison between MRM simulations, CAMS and PVGIS databases with measured solar radiation components at the Methoni station, Greece," Renewable Energy, Elsevier, vol. 146(C), pages 1372-1391.
    3. Daxini, Rajiv & Wu, Yupeng, 2024. "Review of methods to account for the solar spectral influence on photovoltaic device performance," Energy, Elsevier, vol. 286(C).
    4. Ewelina Krawczak, 2023. "A Comparative Analysis of Measured and Simulated Data of PV Rooftop Installations Located in Poland," Energies, MDPI, vol. 16(16), pages 1-17, August.
    5. Grubbs, E.K. & Gruss, S.M. & Schull, V.Z. & Gosney, M.J. & Mickelbart, M.V. & Brouder, S. & Gitau, M.W. & Bermel, P. & Tuinstra, M.R. & Agrawal, R., 2024. "Optimized agrivoltaic tracking for nearly-full commodity crop and energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    6. Vladimir Z. Gjorgievski & Nikolas G. Chatzigeorgiou & Venizelos Venizelou & Georgios C. Christoforidis & George E. Georghiou & Grigoris K. Papagiannis, 2020. "Evaluation of Load Matching Indicators in Residential PV Systems-the Case of Cyprus," Energies, MDPI, vol. 13(8), pages 1-18, April.
    7. Guglielmina Mutani & Valeria Todeschi, 2021. "Optimization of Costs and Self-Sufficiency for Roof Integrated Photovoltaic Technologies on Residential Buildings," Energies, MDPI, vol. 14(13), pages 1-25, July.
    8. Ortega, Eneko & Suarez, Sergio & Jimeno, Juan Carlos & Gutierrez, Jose Rubén & Fano, Vanesa & Otaegi, Aloña & Rivas, Jose Manuel & Navas, Gustavo & Fernandez, Ignacio & Rodriguez-Conde, Sofia, 2024. "An statistical model for the short-term albedo estimation applied to PV bifacial modules," Renewable Energy, Elsevier, vol. 221(C).
    9. Franz Harke & Philipp Otto, 2023. "Solar Self-Sufficient Households as a Driving Factor for Sustainability Transformation," Sustainability, MDPI, vol. 15(3), pages 1-20, February.
    10. Smith, Duncan E. & Hughes, Michael D. & Borca-Tasciuc, Diana-Andra, 2022. "Towards a standard approach for annual energy production of concentrator-based building-integrated photovoltaics," Renewable Energy, Elsevier, vol. 186(C), pages 469-485.
    11. Polo, Jesús & Alonso-Abella, Miguel & Martín-Chivelet, Nuria & Alonso-Montesinos, Joaquín & López, Gabriel & Marzo, Aitor & Nofuentes, Gustavo & Vela-Barrionuevo, Nieves, 2020. "Typical Meteorological Year methodologies applied to solar spectral irradiance for PV applications," Energy, Elsevier, vol. 190(C).
    12. Neves, Guilherme & Vilela, Waldeir & Pereira, Enio & Yamasoe, Marcia & Nofuentes, Gustavo, 2021. "Spectral impact on PV in low-latitude sites: The case of southeastern Brazil," Renewable Energy, Elsevier, vol. 164(C), pages 1306-1319.
    13. García, Ignacio & de Blas, Marian & Hernández, Begoña & Sáenz, Carlos & Torres, José Luis, 2021. "Diffuse irradiance on tilted planes in urban environments: Evaluation of models modified with sky and circumsolar view factors," Renewable Energy, Elsevier, vol. 180(C), pages 1194-1209.
    14. Adarsh Vaderobli & Dev Parikh & Urmila Diwekar, 2020. "Optimization under Uncertainty to Reduce the Cost of Energy for Parabolic Trough Solar Power Plants for Different Weather Conditions," Energies, MDPI, vol. 13(12), pages 1-17, June.
    15. Thomas Huld & Ana M. Gracia Amillo, 2015. "Estimating PV Module Performance over Large Geographical Regions: The Role of Irradiance, Air Temperature, Wind Speed and Solar Spectrum," Energies, MDPI, vol. 8(6), pages 1-23, June.
    16. Sławomir Zator & Waldemar Skomudek, 2020. "Impact of DSM on Energy Management in a Single-Family House with a Heat Pump and Photovoltaic Installation," Energies, MDPI, vol. 13(20), pages 1-20, October.
    17. Irene Romero-Fiances & Emilio Muñoz-Cerón & Rafael Espinoza-Paredes & Gustavo Nofuentes & Juan De la Casa, 2019. "Analysis of the Performance of Various PV Module Technologies in Peru," Energies, MDPI, vol. 12(1), pages 1-19, January.
    18. Meriläinen, Altti & Montonen, Jan-Henri & Hopsu, Jeremias & Kosonen, Antti & Lindh, Tuomo & Ahola, Jero, 2023. "Power balance control and dimensioning of a hybrid off-grid energy system for a Nordic climate townhouse," Renewable Energy, Elsevier, vol. 209(C), pages 310-324.
    19. D. P. N. Nguyen & Johan Lauwaert, 2020. "Calculating the Energy Yield of Si-Based Solar Cells for Belgium and Vietnam Regions at Arbitrary Tilt and Orientation under Actual Weather Conditions," Energies, MDPI, vol. 13(12), pages 1-17, June.
    20. Chen, X.M. & Li, Y. & Zhao, B.Y. & Wang, R.Z., 2020. "Are the optimum angles of photovoltaic systems so important?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:10:p:2766-:d:552768. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.