IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5476-d431616.html
   My bibliography  Save this article

Impact of DSM on Energy Management in a Single-Family House with a Heat Pump and Photovoltaic Installation

Author

Listed:
  • Sławomir Zator

    (Faculty of Production Engineering and Logistics, Opole University of Technology, Sosnkowskiego 31, 45-272 Opole, Poland)

  • Waldemar Skomudek

    (Faculty of Production Engineering and Logistics, Opole University of Technology, Sosnkowskiego 31, 45-272 Opole, Poland)

Abstract

This article presents a case study of a single-family house, whose current energy source is electricity only. Nine years ago, the heat source for the heating system and domestic hot water was an oil boiler, which was changed to an air–water heat pump. Four years ago, when Poland formed the basis of the prosumer market, the first photovoltaic system was established. It was expanded in the following years. In this work are presented the impact of using a heat accumulator on the coefficient of performance of the heat pump, the self-consumption of energy from the photovoltaic system, and the cost of purchasing energy. Comparative calculations were made, with the demand-side management (DSM) active on work days, and on free days (weekends and public holidays) it was not. Attention was paid to the self-consumption factor depending on the algorithms used in an energy meter. The prosumer market in Poland was also described. The calculations described the house as having an annual energy self-consumption from photovoltaic about 6% higher than average values obtained in buildings with heat pumps. Simultaneously, due to energy storage in heat and the load shifting in the multi-zone tariff, the cost of purchasing energy was 47% lower than in a single-zone tariff (without heat storage and load shifting).

Suggested Citation

  • Sławomir Zator & Waldemar Skomudek, 2020. "Impact of DSM on Energy Management in a Single-Family House with a Heat Pump and Photovoltaic Installation," Energies, MDPI, vol. 13(20), pages 1-20, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5476-:d:431616
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5476/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5476/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Riyad Mubarak & Eduardo Weide Luiz & Gunther Seckmeyer, 2019. "Why PV Modules Should Preferably No Longer Be Oriented to the South in the Near Future," Energies, MDPI, vol. 12(23), pages 1-16, November.
    2. Hoppmann, Joern & Volland, Jonas & Schmidt, Tobias S. & Hoffmann, Volker H., 2014. "The economic viability of battery storage for residential solar photovoltaic systems – A review and a simulation model," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1101-1118.
    3. Luthander, Rasmus & Widén, Joakim & Nilsson, Daniel & Palm, Jenny, 2015. "Photovoltaic self-consumption in buildings: A review," Applied Energy, Elsevier, vol. 142(C), pages 80-94.
    4. Omaji Samuel & Sakeena Javaid & Nadeem Javaid & Syed Hassan Ahmed & Muhammad Khalil Afzal & Farruh Ishmanov, 2018. "An Efficient Power Scheduling in Smart Homes Using Jaya Based Optimization with Time-of-Use and Critical Peak Pricing Schemes," Energies, MDPI, vol. 11(11), pages 1-27, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Justyna Smagowicz & Cezary Szwed & Dawid Dąbal & Pavel Scholz, 2022. "A Simulation Model of Power Demand Management by Manufacturing Enterprises under the Conditions of Energy Sector Transformation," Energies, MDPI, vol. 15(9), pages 1-27, April.
    2. Sławomir Zator, 2021. "Power Scheduling Scheme for DSM in Smart Homes with Photovoltaic and Energy Storage," Energies, MDPI, vol. 14(24), pages 1-20, December.
    3. Alberta Carella & Luca Del Ferraro & Annunziata D’Orazio, 2022. "Air/Water Heat Pumps in Existing Heating and Hot Water Systems for Better Urban Air Quality and Primary Energy Savings: Scenarios of Two Italian Cities," Energies, MDPI, vol. 16(1), pages 1-15, December.
    4. Piotr Ciuman & Jan Kaczmarczyk & Małgorzata Jastrzębska, 2022. "Simulation Analysis of Heat Pumps Application for the Purposes of the Silesian Botanical Garden Facilities in Poland," Energies, MDPI, vol. 16(1), pages 1-19, December.
    5. Paula Sankelo & Kaiser Ahmed & Alo Mikola & Jarek Kurnitski, 2022. "Renovation Results of Finnish Single-Family Renovation Subsidies: Oil Boiler Replacement with Heat Pumps," Energies, MDPI, vol. 15(20), pages 1-18, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Klein, Martin & Deissenroth, Marc, 2017. "When do households invest in solar photovoltaics? An application of prospect theory," Energy Policy, Elsevier, vol. 109(C), pages 270-278.
    2. Quoilin, Sylvain & Kavvadias, Konstantinos & Mercier, Arnaud & Pappone, Irene & Zucker, Andreas, 2016. "Quantifying self-consumption linked to solar home battery systems: Statistical analysis and economic assessment," Applied Energy, Elsevier, vol. 182(C), pages 58-67.
    3. Vladimir Z. Gjorgievski & Nikolas G. Chatzigeorgiou & Venizelos Venizelou & Georgios C. Christoforidis & George E. Georghiou & Grigoris K. Papagiannis, 2020. "Evaluation of Load Matching Indicators in Residential PV Systems-the Case of Cyprus," Energies, MDPI, vol. 13(8), pages 1-18, April.
    4. Schopfer, S. & Tiefenbeck, V. & Staake, T., 2018. "Economic assessment of photovoltaic battery systems based on household load profiles," Applied Energy, Elsevier, vol. 223(C), pages 229-248.
    5. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    6. Paschmann, Martin, 2017. "Leveraging the Benefits of Integrating and Interacting Electric Vehicles and Distributed Energy Resources," EWI Working Papers 2017-11, Energiewirtschaftliches Institut an der Universitaet zu Koeln (EWI).
    7. Claudia Gunther & Wolf-Peter Schill & Alexander Zerrahn, 2019. "Prosumage of solar electricity: tariff design, capacity investments, and power system effects," Papers 1907.09855, arXiv.org.
    8. Lopez, A. & Ogayar, B. & Hernández, J.C. & Sutil, F.S., 2020. "Survey and assessment of technical and economic features for the provision of frequency control services by household-prosumers," Energy Policy, Elsevier, vol. 146(C).
    9. Karni Siraganyan & Amarasinghage Tharindu Dasun Perera & Jean-Louis Scartezzini & Dasaraden Mauree, 2019. "Eco-Sim: A Parametric Tool to Evaluate the Environmental and Economic Feasibility of Decentralized Energy Systems," Energies, MDPI, vol. 12(5), pages 1-22, February.
    10. Bertsch, Valentin & Geldermann, Jutta & Lühn, Tobias, 2017. "What drives the profitability of household PV investments, self-consumption and self-sufficiency?," Applied Energy, Elsevier, vol. 204(C), pages 1-15.
    11. Günther, Claudia & Schill, Wolf-Peter & Zerrahn, Alexander, 2021. "Prosumage of solar electricity: Tariff design, capacity investments, and power sector effects," Energy Policy, Elsevier, vol. 152(C).
    12. van der Stelt, Sander & AlSkaif, Tarek & van Sark, Wilfried, 2018. "Techno-economic analysis of household and community energy storage for residential prosumers with smart appliances," Applied Energy, Elsevier, vol. 209(C), pages 266-276.
    13. Resch, Matthias & Bühler, Jochen & Klausen, Mira & Sumper, Andreas, 2017. "Impact of operation strategies of large scale battery systems on distribution grid planning in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1042-1063.
    14. Carlos J. Sarasa-Maestro & Rodolfo Dufo-López & José L. Bernal-Agustín, 2016. "Analysis of Photovoltaic Self-Consumption Systems," Energies, MDPI, vol. 9(9), pages 1-18, August.
    15. Bruno Domenech & Gema Calleja & Jordi Olivella, 2021. "Residential Photovoltaic Profitability with Storage under the New Spanish Regulation: A Multi-Scenario Analysis," Energies, MDPI, vol. 14(7), pages 1-17, April.
    16. Azuatalam, Donald & Paridari, Kaveh & Ma, Yiju & Förstl, Markus & Chapman, Archie C. & Verbič, Gregor, 2019. "Energy management of small-scale PV-battery systems: A systematic review considering practical implementation, computational requirements, quality of input data and battery degradation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 555-570.
    17. Tervo, Eric & Agbim, Kenechi & DeAngelis, Freddy & Hernandez, Jeffrey & Kim, Hye Kyung & Odukomaiya, Adewale, 2018. "An economic analysis of residential photovoltaic systems with lithium ion battery storage in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1057-1066.
    18. Petrollese, Mario & Cau, Giorgio & Cocco, Daniele, 2018. "Use of weather forecast for increasing the self-consumption rate of home solar systems: An Italian case study," Applied Energy, Elsevier, vol. 212(C), pages 746-758.
    19. Aniello, Gianmarco & Shamon, Hawal & Kuckshinrichs, Wilhelm, 2021. "Micro-economic assessment of residential PV and battery systems: The underrated role of financial and fiscal aspects," Applied Energy, Elsevier, vol. 281(C).
    20. Lucas Deotti & Wanessa Guedes & Bruno Dias & Tiago Soares, 2020. "Technical and Economic Analysis of Battery Storage for Residential Solar Photovoltaic Systems in the Brazilian Regulatory Context," Energies, MDPI, vol. 13(24), pages 1-30, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5476-:d:431616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.