IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p710-d317415.html
   My bibliography  Save this article

Medium- and Long-Term Integrated Demand Response of Integrated Energy System Based on System Dynamics

Author

Listed:
  • Shuhui Ren

    (College of Electrical Engineering and Control Science, Nanjing TECH University, Nanjing 211816, China)

  • Xun Dou

    (College of Electrical Engineering and Control Science, Nanjing TECH University, Nanjing 211816, China)

  • Zhen Wang

    (College of Electrical Engineering and Control Science, Nanjing TECH University, Nanjing 211816, China)

  • Jun Wang

    (College of Electrical Engineering and Control Science, Nanjing TECH University, Nanjing 211816, China)

  • Xiangyan Wang

    (China Electric Power Research Institute, Nanjing 210003, China)

Abstract

For the integrated energy system of coupling electrical, cool and heat energy and gas and other forms of energy, the medium- and long-term integrated demand response of flexible load, energy storage and electric vehicles and other demand side resources is studied. It is helpful to mine the potentials of demand response of various energy sources in the medium- and long-term, stimulate the flexibility of integrated energy system, and improve the efficiency of energy utilization. Firstly, based on system dynamics, the response mode of demand response resources is analyzed from different time dimensions, and the long-term, medium-term and short-term behaviors of users participating in integrated demand response are considered comprehensively. An integrated demand response model based on medium-and long-term time dimension is established. Then the integrated demand response model of integrated energy system scheduling and flexible load, energy storage and electric vehicles as the main participants is established to simulate the response income of users participating in the integrated demand response project, and to provide data sources for the medium- and long-term integrated demand response system dynamics model. Finally, an example is given to analyze the differences in response behaviors of flexible load, energy storage and electric vehicle users in different time dimensions under the conditions of policy subsidy, regional location and user energy preferences in different stages of the integrated energy system.

Suggested Citation

  • Shuhui Ren & Xun Dou & Zhen Wang & Jun Wang & Xiangyan Wang, 2020. "Medium- and Long-Term Integrated Demand Response of Integrated Energy System Based on System Dynamics," Energies, MDPI, vol. 13(3), pages 1-24, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:710-:d:317415
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/710/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/710/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhenyu Lv & Zaijun Wu & Xiaobo Dou & Min Zhou & Wenqiang Hu, 2020. "Distributed Economic Dispatch Scheme for Droop-Based Autonomous DC Microgrid," Energies, MDPI, vol. 13(2), pages 1-27, January.
    2. Zhiyuan Liu & Hang Yu & Rui Liu & Meng Wang & Chaoen Li, 2020. "Configuration Optimization Model for Data-Center-Park-Integrated Energy Systems under Economic, Reliability, and Environmental Considerations," Energies, MDPI, vol. 13(2), pages 1-22, January.
    3. Fragaki, Aikaterini & Andersen, Anders N., 2011. "Conditions for aggregation of CHP plants in the UK electricity market and exploration of plant size," Applied Energy, Elsevier, vol. 88(11), pages 3930-3940.
    4. Fragaki, Aikaterini & Andersen, Anders N. & Toke, David, 2008. "Exploration of economical sizing of gas engine and thermal store for combined heat and power plants in the UK," Energy, Elsevier, vol. 33(11), pages 1659-1670.
    5. Xueying Song & Hongyu Lin & Gejirifu De & Hanfang Li & Xiaoxu Fu & Zhongfu Tan, 2020. "An Energy Optimal Dispatching Model of an Integrated Energy System Based on Uncertain Bilevel Programming," Energies, MDPI, vol. 13(2), pages 1-24, January.
    6. Bradley, Peter & Leach, Matthew & Torriti, Jacopo, 2013. "A review of the costs and benefits of demand response for electricity in the UK," Energy Policy, Elsevier, vol. 52(C), pages 312-327.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. José D. Morcillo & Fabiola Angulo & Carlos J. Franco, 2020. "Analyzing the Hydroelectricity Variability on Power Markets from a System Dynamics and Dynamic Systems Perspective: Seasonality and ENSO Phenomenon," Energies, MDPI, vol. 13(9), pages 1-25, May.
    2. Fan, Wei & Tan, Zhongfu & Li, Fanqi & Zhang, Amin & Ju, Liwei & Wang, Yuwei & De, Gejirifu, 2023. "A two-stage optimal scheduling model of integrated energy system based on CVaR theory implementing integrated demand response," Energy, Elsevier, vol. 263(PC).
    3. Yang Wang & Yifan Wang & Zhenghui Zhao & Zhiquan Zhou & Zhihao Hou, 2023. "Multi-Timescale Optimal Operation Strategy for Renewable Energy Power Systems Based on Inertia Evaluation," Energies, MDPI, vol. 16(8), pages 1-15, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, Poul Alberg & Andersen, Anders N., 2021. "Variable taxes promoting district heating heat pump flexibility," Energy, Elsevier, vol. 221(C).
    2. Østergaard, Poul Alberg & Andersen, Anders N., 2018. "Economic feasibility of booster heat pumps in heat pump-based district heating systems," Energy, Elsevier, vol. 155(C), pages 921-929.
    3. Capuder, Tomislav & Mancarella, Pierluigi, 2014. "Techno-economic and environmental modelling and optimization of flexible distributed multi-generation options," Energy, Elsevier, vol. 71(C), pages 516-533.
    4. Wright, Daniel G. & Dey, Prasanta K. & Brammer, John, 2014. "A barrier and techno-economic analysis of small-scale bCHP (biomass combined heat and power) schemes in the UK," Energy, Elsevier, vol. 71(C), pages 332-345.
    5. Østergaard, Poul Alberg & Andersen, Anders N., 2016. "Booster heat pumps and central heat pumps in district heating," Applied Energy, Elsevier, vol. 184(C), pages 1374-1388.
    6. Kiss, Viktor Miklós, 2015. "Modelling the energy system of Pécs – The first step towards a sustainable city," Energy, Elsevier, vol. 80(C), pages 373-387.
    7. Mongibello, Luigi & Bianco, Nicola & Caliano, Martina & Graditi, Giorgio, 2016. "Comparison between two different operation strategies for a heat-driven residential natural gas-fired CHP system: Heat dumping vs. load partialization," Applied Energy, Elsevier, vol. 184(C), pages 55-67.
    8. Chesi, Andrea & Ferrara, Giovanni & Ferrari, Lorenzo & Magnani, Sandro & Tarani, Fabio, 2013. "Influence of the heat storage size on the plant performance in a Smart User case study," Applied Energy, Elsevier, vol. 112(C), pages 1454-1465.
    9. Cho, Woojin & Lee, Kwan-Soo, 2014. "A simple sizing method for combined heat and power units," Energy, Elsevier, vol. 65(C), pages 123-133.
    10. Barbieri, Enrico Saverio & Melino, Francesco & Morini, Mirko, 2012. "Influence of the thermal energy storage on the profitability of micro-CHP systems for residential building applications," Applied Energy, Elsevier, vol. 97(C), pages 714-722.
    11. Østergaard, Poul Alberg & Andersen, Anders N. & Sorknæs, Peter, 2022. "The business-economic energy system modelling tool energyPRO," Energy, Elsevier, vol. 257(C).
    12. Sorknæs, Peter & Lund, Henrik & Andersen, Anders N., 2015. "Future power market and sustainable energy solutions – The treatment of uncertainties in the daily operation of combined heat and power plants," Applied Energy, Elsevier, vol. 144(C), pages 129-138.
    13. Kontu, K. & Rinne, S. & Junnila, S., 2019. "Introducing modern heat pumps to existing district heating systems – Global lessons from viable decarbonizing of district heating in Finland," Energy, Elsevier, vol. 166(C), pages 862-870.
    14. Fang, Tingting & Lahdelma, Risto, 2016. "Optimization of combined heat and power production with heat storage based on sliding time window method," Applied Energy, Elsevier, vol. 162(C), pages 723-732.
    15. Kiss, Viktor Miklós & Hetesi, Zsolt & Kiss, Tibor, 2016. "Issues and solutions relating to Hungary's electricity system," Energy, Elsevier, vol. 116(P1), pages 329-340.
    16. Kitapbayev, Yerkin & Moriarty, John & Mancarella, Pierluigi, 2015. "Stochastic control and real options valuation of thermal storage-enabled demand response from flexible district energy systems," Applied Energy, Elsevier, vol. 137(C), pages 823-831.
    17. Murugan, S. & Horák, Bohumil, 2016. "A review of micro combined heat and power systems for residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 144-162.
    18. Andersen, Anders N. & Østergaard, Poul Alberg, 2018. "A method for assessing support schemes promoting flexibility at district energy plants," Applied Energy, Elsevier, vol. 225(C), pages 448-459.
    19. Bartnik, Ryszard & Buryn, Zbigniew & Hnydiuk-Stefan, Anna, 2021. "Thermodynamic and economic analysis of effect of heat accumulator volume on the specific cost of heat production in the gas-steam CHP plant," Energy, Elsevier, vol. 230(C).
    20. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:710-:d:317415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.