IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2352-d355490.html
   My bibliography  Save this article

Chemical Looping Co-Gasification Characteristics of Cyanobacterial/Coal Blends

Author

Listed:
  • Tianxu Shen

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Jiang Zhang

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Laihong Shen

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

  • Lei Bai

    (Department of Chemical and Biomedical Engineering, West Virginia University, Morgantown, WV 26506, USA)

  • Jingchun Yan

    (Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China)

Abstract

The frequent outbreak of cyanobacteria bloom results in an urgent need for the resource utilization of cyanobacteria. However, the development of routine thermal treatment (i.e., gasification and pyrolysis) is hindered by the issue of high moisture content. In order to minimize the dewatering requirement, this study investigated the chemical looping co-gasification of the cyanobacteria/coal mixture. The results showed that the residual moisture of cyanobacteria not only could serve as the gasifying agent of coal, but also presented a better gasification effect than the injecting steam. Meanwhile, blending cyanobacteria also improved the performance of coal chemical looping gasification in terms of the syngas quality, gasification rate, and carbon conversion efficiency. Cyanobacteria pyrolysis supplied abundant hydrocarbons and hydrogen-rich gases. The highest syngas yield of 1.26 Nm 3 /kg was obtained in the mixture fuel of 46 wt.% cyanobacteria and 54 wt.% coal under a 0.3 oxygen carrier-to-fuel ratio. A slight interaction effect was observed in the pyrolysis process, in which the reactivity of coal pyrolysis was enhanced by the oxygenated groups of cyanobacteria volatile. The dominant motive of the interaction effect was the catalytic effect of alkali metals of cyanobacteria ash on the coal gasification. However, the formation of aluminosilicates deactivated alkali metals and further inhibited the char gasification. The intensity of interaction effect was demonstrated to be highly relevant with the (Na + K)/Al molar ratio of ash. The most prominent interaction effect occurred for the sample with 82 wt.% cyanobacteria, but a negative interaction was observed in the sample with 10 wt.% cyanobacteria. Both homogeneous reaction and shrinking core models showed the excellent fitting performance in the char gasification process. However, these two models could not be applied to the initial pyrolysis process because of the intricate mechanisms.

Suggested Citation

  • Tianxu Shen & Jiang Zhang & Laihong Shen & Lei Bai & Jingchun Yan, 2020. "Chemical Looping Co-Gasification Characteristics of Cyanobacterial/Coal Blends," Energies, MDPI, vol. 13(9), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2352-:d:355490
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2352/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2352/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zaini, Ilman Nuran & Nurdiawati, Anissa & Aziz, Muhammad, 2017. "Cogeneration of power and H2 by steam gasification and syngas chemical looping of macroalgae," Applied Energy, Elsevier, vol. 207(C), pages 134-145.
    2. Thiruvenkadam, Selvakumar & Izhar, Shamsul & Yoshida, Hiroyuki & Danquah, Michael K. & Harun, Razif, 2015. "Process application of Subcritical Water Extraction (SWE) for algal bio-products and biofuels production," Applied Energy, Elsevier, vol. 154(C), pages 815-828.
    3. Wang, Qing & Zhao, Weizhen & Liu, Hongpeng & Jia, Chunxia & Li, Shaohua, 2011. "Interactions and kinetic analysis of oil shale semi-coke with cornstalk during co-combustion," Applied Energy, Elsevier, vol. 88(6), pages 2080-2087, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zhiyu & Li, Jian & Yu, Tianxiao & Jia, Xiaopeng & Zhao, Juan & Yan, Beibei & Chen, Guanyi, 2024. "Chemical looping gasification of high-moisture content biomass: The interactions between H2O and oxygen carrier," Applied Energy, Elsevier, vol. 368(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juangsa, Firman Bagja & Prananto, Lukman Adi & Mufrodi, Zahrul & Budiman, Arief & Oda, Takuya & Aziz, Muhammad, 2018. "Highly energy-efficient combination of dehydrogenation of methylcyclohexane and hydrogen-based power generation," Applied Energy, Elsevier, vol. 226(C), pages 31-38.
    2. Song, Xiaobing & Zhang, Shouyu & Wu, Yuanmo & Cao, Zhongyao, 2020. "Investigation on the properties of the bio-briquette fuel prepared from hydrothermal pretreated cotton stalk and wood sawdust," Renewable Energy, Elsevier, vol. 151(C), pages 184-191.
    3. Yoon, Kwangsuk & Lee, Sang Soo & Ok, Yong Sik & Kwon, Eilhann E. & Song, Hocheol, 2019. "Enhancement of syngas for H2 production via catalytic pyrolysis of orange peel using CO2 and bauxite residue," Applied Energy, Elsevier, vol. 254(C).
    4. Zaini, Ilman Nuran & Gomez-Rueda, Yamid & García López, Cristina & Ratnasari, Devy Kartika & Helsen, Lieve & Pretz, Thomas & Jönsson, Pär Göran & Yang, Weihong, 2020. "Production of H2-rich syngas from excavated landfill waste through steam co-gasification with biochar," Energy, Elsevier, vol. 207(C).
    5. Bailera, Manuel & Lisbona, Pilar & Romeo, Luis M. & Espatolero, Sergio, 2017. "Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 292-312.
    6. Xiang, Dong & Jin, Tong & Lei, Xinru & Liu, Shuai & Jiang, Yong & Dong, Zhongbing & Tao, Quanbao & Cao, Yan, 2018. "The high efficient synthesis of natural gas from a joint-feedstock of coke-oven gas and pulverized coke via a chemical looping combustion scheme," Applied Energy, Elsevier, vol. 212(C), pages 944-954.
    7. Wijayanta, Agung Tri & Aziz, Muhammad, 2019. "Ammonia production from algae via integrated hydrothermal gasification, chemical looping, N2 production, and NH3 synthesis," Energy, Elsevier, vol. 174(C), pages 331-338.
    8. Gomes, J.G. & Mitoura, J. & Guirardello, R., 2022. "Thermodynamic analysis for hydrogen production from the reaction of subcritical and supercritical gasification of the C. Vulgaris microalgae," Energy, Elsevier, vol. 260(C).
    9. Aman Turakhanov & Albina Tsyshkova & Elena Mukhina & Evgeny Popov & Darya Kalacheva & Ekaterina Dvoretskaya & Anton Kasyanenko & Konstantin Prochukhan & Alexey Cheremisin, 2021. "Cyclic Subcritical Water Injection into Bazhenov Oil Shale: Geochemical and Petrophysical Properties Evolution Due to Hydrothermal Exposure," Energies, MDPI, vol. 14(15), pages 1-16, July.
    10. Xiao, Chao & Liao, Qiang & Fu, Qian & Huang, Yun & Chen, Hao & Zhang, Hong & Xia, Ao & Zhu, Xun & Reungsang, Alissara & Liu, Zhidan, 2019. "A solar-driven continuous hydrothermal pretreatment system for biomethane production from microalgae biomass," Applied Energy, Elsevier, vol. 236(C), pages 1011-1018.
    11. Xie, Candie & Liu, Jingyong & Zhang, Xiaochun & Xie, Wuming & Sun, Jian & Chang, Kenlin & Kuo, Jiahong & Xie, Wenhao & Liu, Chao & Sun, Shuiyu & Buyukada, Musa & Evrendilek, Fatih, 2018. "Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks," Applied Energy, Elsevier, vol. 212(C), pages 786-795.
    12. Liu, Guangrui & Yan, Beibei & Chen, Guanyi, 2013. "Technical review on jet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 59-70.
    13. Nurdiawati, Anissa & Zaini, Ilman Nuran & Irhamna, Adrian Rizqi & Sasongko, Dwiwahju & Aziz, Muhammad, 2019. "Novel configuration of supercritical water gasification and chemical looping for highly-efficient hydrogen production from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 369-381.
    14. Deliang Kong & Changbin Yuan & Maojiong Cao & Zihan Wang & Yuanhui Zhang & Zhidan Liu, 2023. "An Ecological Toilet System Incorporated with a Hydrothermal Liquefaction Process," Sustainability, MDPI, vol. 15(8), pages 1-13, April.
    15. Yang, Qingchun & Qian, Yu & Kraslawski, Andrzej & Zhou, Huairong & Yang, Siyu, 2016. "Advanced exergy analysis of an oil shale retorting process," Applied Energy, Elsevier, vol. 165(C), pages 405-415.
    16. Xiang, Dong & Zhou, Yunpeng, 2018. "Concept design and techno-economic performance of hydrogen and ammonia co-generation by coke-oven gas-pressure swing adsorption integrated with chemical looping hydrogen process," Applied Energy, Elsevier, vol. 229(C), pages 1024-1034.
    17. Xu, Donghai & Guo, Shuwei & Liu, Liang & Lin, Guike & Wu, Zhiqiang & Guo, Yang & Wang, Shuzhong, 2019. "Heterogeneous catalytic effects on the characteristics of water-soluble and water-insoluble biocrudes in chlorella hydrothermal liquefaction," Applied Energy, Elsevier, vol. 243(C), pages 165-174.
    18. Zaini, Ilman Nuran & Nurdiawati, Anissa & Aziz, Muhammad, 2017. "Cogeneration of power and H2 by steam gasification and syngas chemical looping of macroalgae," Applied Energy, Elsevier, vol. 207(C), pages 134-145.
    19. Darmawan, Arif & Ajiwibowo, Muhammad W. & Yoshikawa, Kunio & Aziz, Muhammad & Tokimatsu, Koji, 2018. "Energy-efficient recovery of black liquor through gasification and syngas chemical looping," Applied Energy, Elsevier, vol. 219(C), pages 290-298.
    20. Cheng, Xi-Yu & Liu, Chun-Zhao, 2012. "Fungal pretreatment enhances hydrogen production via thermophilic fermentation of cornstalk," Applied Energy, Elsevier, vol. 91(1), pages 1-6.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2352-:d:355490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.