IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i9p2304-d354508.html
   My bibliography  Save this article

Co-Pyrolysis of Beet Pulp and Defecation Lime in TG-MS System

Author

Listed:
  • Radosław Slezak

    (Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland)

  • Liliana Krzystek

    (Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland)

  • Piotr Dziugan

    (Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wolczanska 171-173, 90-924 Lodz, Poland)

  • Stanisław Ledakowicz

    (Department of Bioprocess Engineering, Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland)

Abstract

The process of pyrolysis of beet pulp, a by-product after the extraction of raw sugar from sugar beet, with the addition of defecation lime was studied in a thermobalance coupled with a mass spectrometer. The beet pulp pyrolysis process took place completely at 600 °C, and the resulting char, tar and gas were characterized by higher heating values of 23.9, 21.6 and 7.77 MJ/kg, respectively. The addition of the defecation lime to beet pulp caused both an increase in the char production yield and a decrease in the tar production yield. At the same time, the higher heating value of char and tar decreased along with the increase of defecation lime added to the sample. The deconvolution of derivative thermogravimetric (DTG) curves allowed us to identify the basic components of beet pulp, for which the activation energy by isoconversion method was calculated. The 20 wt.% addition of defecation lime caused an increase of the activation energy by about 18%. Further increase in the defecation lime content resulted in a reduction of activation energy. At the temperature above 600 °C, calcination of calcium carbonate contained in defecation lime occurred. The CO 2 produced during calcination process did not cause auto-gasification of char.

Suggested Citation

  • Radosław Slezak & Liliana Krzystek & Piotr Dziugan & Stanisław Ledakowicz, 2020. "Co-Pyrolysis of Beet Pulp and Defecation Lime in TG-MS System," Energies, MDPI, vol. 13(9), pages 1-13, May.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2304-:d:354508
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/9/2304/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/9/2304/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Opatokun, Suraj Adebayo & Strezov, Vladimir & Kan, Tao, 2015. "Product based evaluation of pyrolysis of food waste and its digestate," Energy, Elsevier, vol. 92(P3), pages 349-354.
    2. Wang, Guangwei & Zhang, Jianliang & Shao, Jiugang & Liu, Zhengjian & Wang, Haiyang & Li, Xinyu & Zhang, Pengcheng & Geng, Weiwei & Zhang, Guohua, 2016. "Experimental and modeling studies on CO2 gasification of biomass chars," Energy, Elsevier, vol. 114(C), pages 143-154.
    3. Zhang, Xin & Deng, Honghu & Hou, Xueyi & Qiu, Rongliang & Chen, Zhihua, 2019. "Pyrolytic behavior and kinetic of wood sawdust at isothermal and non-isothermal conditions," Renewable Energy, Elsevier, vol. 142(C), pages 284-294.
    4. Zhong, Chongli & Wei, Xiaomin, 2004. "A comparative experimental study on the liquefaction of wood," Energy, Elsevier, vol. 29(11), pages 1731-1741.
    5. Nicodème, Thibault & Berchem, Thomas & Jacquet, Nicolas & Richel, Aurore, 2018. "Thermochemical conversion of sugar industry by-products to biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 151-159.
    6. Kwon, Eilhann E. & Lee, Taewoo & Ok, Yong Sik & Tsang, Daniel C.W. & Park, Chanhyuk & Lee, Jechan, 2018. "Effects of calcium carbonate on pyrolysis of sewage sludge," Energy, Elsevier, vol. 153(C), pages 726-731.
    7. Jun-Ho Jo & Seung-Soo Kim & Jae-Wook Shim & Ye-Eun Lee & Yeong-Seok Yoo, 2017. "Pyrolysis Characteristics and Kinetics of Food Wastes," Energies, MDPI, vol. 10(8), pages 1-13, August.
    8. Wilk, Małgorzata & Magdziarz, Aneta & Kalemba, Izabela & Gara, Paweł, 2016. "Carbonisation of wood residue into charcoal during low temperature process," Renewable Energy, Elsevier, vol. 85(C), pages 507-513.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Zhikun & Zhu, Zongyuan & Shen, Boxiong & Liu, Lina, 2019. "Insights into biochar and hydrochar production and applications: A review," Energy, Elsevier, vol. 171(C), pages 581-598.
    2. Brand, Steffen & Hardi, Flabianus & Kim, Jaehoon & Suh, Dong Jin, 2014. "Effect of heating rate on biomass liquefaction: Differences between subcritical water and supercritical ethanol," Energy, Elsevier, vol. 68(C), pages 420-427.
    3. Hu, Sheng-Chun & Cheng, Jie & Wang, Wu-Ping & Zhu, Ya-Hong & Kang, Kang & Zhu, Ming-Qiang & Huang, Xiao-Hua, 2022. "Preparation and analysis of pyroligneous liquor, charcoal and gas from lacquer wood by carbonization method based on a biorefinery process," Energy, Elsevier, vol. 239(PA).
    4. Du, Hong & Ma, Xiuyun & Jiang, Miao & Yan, Peifang & Zhang, Z.Conrad, 2021. "Autocatalytic co-upgrading of biochar and pyrolysis gas to syngas," Energy, Elsevier, vol. 221(C).
    5. Magdalena Matusiak & Radosław Ślęzak & Stanisław Ledakowicz, 2020. "Thermogravimetric Kinetics of Selected Energy Crops Pyrolysis," Energies, MDPI, vol. 13(15), pages 1-15, August.
    6. Brand, Steffen & Susanti, Ratna Frida & Kim, Seok Ki & Lee, Hong-shik & Kim, Jaehoon & Sang, Byung-In, 2013. "Supercritical ethanol as an enhanced medium for lignocellulosic biomass liquefaction: Influence of physical process parameters," Energy, Elsevier, vol. 59(C), pages 173-182.
    7. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio & Braglia, Roberto & Canini, Antonella, 2018. "Ampelodesmos mauritanicus pyrolysis biochar in anaerobic digestion process: Evaluation of the biogas yield," Energy, Elsevier, vol. 161(C), pages 663-669.
    8. Zhou, Tianxing & Zhang, Weiwei & Luo, Siyi & Zuo, Zongliang & Ren, Dongdong, 2023. "The effect of ash fusion characteristic on the structure characteristics of carbon and the migration of potassium during rice straw high-temperature gasification process," Energy, Elsevier, vol. 284(C).
    9. Bo Wang & Jie Yu & Hui Liao & Wenkun Zhu & Pingping Ding & Jian Zhou, 2020. "Adsorption of Lead (II) from Aqueous Solution with High Efficiency by Hydrothermal Biochar Derived from Honey," IJERPH, MDPI, vol. 17(10), pages 1-13, May.
    10. Chen, Renjie & Yu, Xiaoqing & Dong, Bin & Dai, Xiaohu, 2020. "Sludge-to-energy approaches based on pathways that couple pyrolysis with anaerobic digestion (thermal hydrolysis pre/post-treatment): Energy efficiency assessment and pyrolysis kinetics analysis," Energy, Elsevier, vol. 190(C).
    11. Liu, Jingxin & Huang, Simian & Wang, Teng & Mei, Meng & Chen, Si & Zhang, Wenjuan & Li, Jinping, 2021. "Evaluation on thermal treatment for sludge from the liquid digestion of restaurant food waste," Renewable Energy, Elsevier, vol. 179(C), pages 179-188.
    12. Bi, Zheting & Zhang, Ji & Zhu, Zeying & Liang, Yanna & Wiltowski, Tomasz, 2018. "Generating biocrude from partially defatted Cryptococcus curvatus yeast residues through catalytic hydrothermal liquefaction," Applied Energy, Elsevier, vol. 209(C), pages 435-444.
    13. Silva, F.T.M. & Ataíde, C.H., 2019. "Valorization of eucalyptus urograndis wood via carbonization: Product yields and characterization," Energy, Elsevier, vol. 172(C), pages 509-516.
    14. Liang, Wang & Wang, Guangwei & Xu, Runsheng & Ning, Xiaojun & Zhang, Jianliang & Guo, Xingmin & Ye, Lian & Li, Jinhua & Jiang, Chunhe & Wang, Peng & Wang, Chuan, 2022. "Hydrothermal carbonization of forest waste into solid fuel: Mechanism and combustion behavior," Energy, Elsevier, vol. 246(C).
    15. Vandenberghe, L.P.S. & Valladares-Diestra, K.K. & Bittencourt, G.A. & Zevallos Torres, L.A. & Vieira, S. & Karp, S.G. & Sydney, E.B. & de Carvalho, J.C. & Thomaz Soccol, V. & Soccol, C.R., 2022. "Beyond sugar and ethanol: The future of sugarcane biorefineries in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Mohamad Aziz, Nur Atiqah & Mohamed, Hassan & Kania, Dina & Ong, Hwai Chyuan & Zainal, Bidattul Syirat & Junoh, Hazlina & Ker, Pin Jern & Silitonga, A.S., 2024. "Bioenergy production by integrated microwave-assisted torrefaction and pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    17. Kan, Tao & Strezov, Vladimir & Evans, Tim & He, Jing & Kumar, Ravinder & Lu, Qiang, 2020. "Catalytic pyrolysis of lignocellulosic biomass: A review of variations in process factors and system structure," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    18. Awalludin, Mohd Fahmi & Sulaiman, Othman & Hashim, Rokiah & Nadhari, Wan Noor Aidawati Wan, 2015. "An overview of the oil palm industry in Malaysia and its waste utilization through thermochemical conversion, specifically via liquefaction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1469-1484.
    19. Yuan, X.Z. & Li, H. & Zeng, G.M. & Tong, J.Y. & Xie, W., 2007. "Sub- and supercritical liquefaction of rice straw in the presence of ethanol–water and 2-propanol–water mixture," Energy, Elsevier, vol. 32(11), pages 2081-2088.
    20. Wang, Guangwei & Zhang, Jianliang & Zhang, Guohua & Ning, Xiaojun & Li, Xinyu & Liu, Zhengjian & Guo, Jian, 2017. "Experimental and kinetic studies on co-gasification of petroleum coke and biomass char blends," Energy, Elsevier, vol. 131(C), pages 27-40.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:9:p:2304-:d:354508. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.