IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v189y2024ipas136403212300816x.html
   My bibliography  Save this article

Innovations and advances in enzymatic deconstruction of biomass and their sustainability analysis: A review

Author

Listed:
  • Singh, Saurabh
  • Morya, Raj
  • Jaiswal, Durgesh Kumar
  • Keerthana, S.
  • Kim, Sang-Hyoun
  • Manimekalai, R.
  • Prudêncio de Araujo Pereira, Arthur
  • Verma, Jay Prakash

Abstract

Increasing population and continuously growing food demand has led to an overwhelming production of agro waste. Further the improper management of agro waste and stubble burning leads to harmful emissions (especially GHG emissions) into the atmosphere. The conversion of waste into biofuels is a highly lucrative option considering the utilization of waste and its use as an alternative to fossil fuel. However, it needs to tackle the obstacles in proper transportation of waste to the site of conversion or biorefineries, technical issues in the pre-treatment, high moisture content in the feedstock, compositional variations in the feedstock, enzymatic efficiency of the saccharifying enzymes, and the various other steps used in the conversion of biomass from raw material to end product. And when all these factors are optimized, the cost-effectiveness and eco-friendliness of the processes and the product have to be considered. This review sheds light upon the deconstruction of lignocellulosic biomass for conversion into biofuels in biorefineries with a major emphasis on bioethanol. This review describes the innovations and advances made to increase the cost-effectiveness and environmental friendliness of alternative fuels such as bioethanol, highlighting recent developments in pretreatment methods, enzymatic saccharification as well as their sustainability analysis. In recent past, advanced methods such as CRISPR-Cas gene editing and artificial intelligence have emerged as powerful tools for microbial modification in biofuel production. The recent advancements and achievements in the field, including the gene editing of microbial strains with enhanced biofuel production capabilities which would revolutionize the industry are highlighted.

Suggested Citation

  • Singh, Saurabh & Morya, Raj & Jaiswal, Durgesh Kumar & Keerthana, S. & Kim, Sang-Hyoun & Manimekalai, R. & Prudêncio de Araujo Pereira, Arthur & Verma, Jay Prakash, 2024. "Innovations and advances in enzymatic deconstruction of biomass and their sustainability analysis: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
  • Handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s136403212300816x
    DOI: 10.1016/j.rser.2023.113958
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212300816X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113958?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kumari, Dolly & Singh, Radhika, 2018. "Pretreatment of lignocellulosic wastes for biofuel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 877-891.
    2. Minjeong Lee & Minseok Yang & Sangki Choi & Jingyeong Shin & Chanhyuk Park & Si-Kyung Cho & Young Mo Kim, 2019. "Sequential Production of Lignin, Fatty Acid Methyl Esters and Biogas from Spent Coffee Grounds via an Integrated Physicochemical and Biological Process," Energies, MDPI, vol. 12(12), pages 1-13, June.
    3. Gupta, Anubhuti & Verma, Jay Prakash, 2015. "Sustainable bio-ethanol production from agro-residues: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 550-567.
    4. Bin Long & Bart Fischer & Yining Zeng & Zoe Amerigian & Qiang Li & Henry Bryant & Man Li & Susie Y. Dai & Joshua S. Yuan, 2022. "Machine learning-informed and synthetic biology-enabled semi-continuous algal cultivation to unleash renewable fuel productivity," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Rastogi, Meenal & Shrivastava, Smriti, 2017. "Recent advances in second generation bioethanol production: An insight to pretreatment, saccharification and fermentation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 330-340.
    6. Duarte, Alexandra & Uribe, Juan Carlos & Sarache, William & Calderón, Andrés, 2021. "Economic, environmental, and social assessment of bioethanol production using multiple coffee crop residues," Energy, Elsevier, vol. 216(C).
    7. Nicodème, Thibault & Berchem, Thomas & Jacquet, Nicolas & Richel, Aurore, 2018. "Thermochemical conversion of sugar industry by-products to biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 151-159.
    8. Zhao, Chen & Zou, Zongsheng & Li, Jisheng & Jia, Honglei & Liesche, Johannes & Chen, Shaolin & Fang, Hao, 2018. "Efficient bioethanol production from sodium hydroxide pretreated corn stover and rice straw in the context of on-site cellulase production," Renewable Energy, Elsevier, vol. 118(C), pages 14-24.
    9. Mohammad HamediRad & Ran Chao & Scott Weisberg & Jiazhang Lian & Saurabh Sinha & Huimin Zhao, 2019. "Towards a fully automated algorithm driven platform for biosystems design," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    10. Singh, Jasvinder & Gu, Sai, 2010. "Commercialization potential of microalgae for biofuels production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2596-2610, December.
    11. Anu, & Kumar, Anil & Jain, Kavish Kumar & Singh, Bijender, 2020. "Process optimization for chemical pretreatment of rice straw for bioethanol production," Renewable Energy, Elsevier, vol. 156(C), pages 1233-1243.
    12. Fakayode, Olugbenga Abiola & Akpabli-Tsigbe, Nelson Dzidzorgbe Kwaku & Wahia, Hafida & Tu, Shanshan & Ren, Manni & Zhou, Cunshan & Ma, Haile, 2021. "Integrated bioprocess for bio-ethanol production from watermelon rind biomass: Ultrasound-assisted deep eutectic solvent pretreatment, enzymatic hydrolysis and fermentation," Renewable Energy, Elsevier, vol. 180(C), pages 258-270.
    13. Klein, Bruno Colling & Chagas, Mateus Ferreira & Junqueira, Tassia Lopes & Rezende, Mylene Cristina Alves Ferreira & Cardoso, Terezinha de Fátima & Cavalett, Otavio & Bonomi, Antonio, 2018. "Techno-economic and environmental assessment of renewable jet fuel production in integrated Brazilian sugarcane biorefineries," Applied Energy, Elsevier, vol. 209(C), pages 290-305.
    14. Tijana Radivojević & Zak Costello & Kenneth Workman & Hector Garcia Martin, 2020. "A machine learning Automated Recommendation Tool for synthetic biology," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    15. Gomes, Daniel G. & Teixeira, José A. & Domingues, Lucília, 2021. "Economic determinants on the implementation of a Eucalyptus wood biorefinery producing biofuels, energy and high added-value compounds," Applied Energy, Elsevier, vol. 303(C).
    16. Woochul Jung & Dhanalekshmi Savithri & Ratna Sharma-Shivappa & Praveen Kolar, 2018. "Changes in Lignin Chemistry of Switchgrass due to Delignification by Sodium Hydroxide Pretreatment," Energies, MDPI, vol. 11(2), pages 1-12, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    2. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Awad, Faisal N. & Qi, Xianghui & Sahu, J.N., 2019. "Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 105-128.
    3. Merve Nazli Borand & Asli Isler Kaya & Filiz Karaosmanoglu, 2020. "Saccharification Yield through Enzymatic Hydrolysis of the Steam-Exploded Pinewood," Energies, MDPI, vol. 13(17), pages 1-12, September.
    4. Holmatov, B. & Schyns, J.F. & Krol, M.S. & Gerbens-Leenes, P.W. & Hoekstra, A.Y., 2021. "Can crop residues provide fuel for future transport? Limited global residue bioethanol potentials and large associated land, water and carbon footprints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Wu, Bo & Wang, Yan-Wei & Dai, Yong-Hua & Song, Chao & Zhu, Qi-Li & Qin, Han & Tan, Fu-Rong & Chen, Han-Cheng & Dai, Li-Chun & Hu, Guo-Quan & He, Ming-Xiong, 2021. "Current status and future prospective of bio-ethanol industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Xi Zhang & Te Zhang & Xin Wei & Zhanpeng Xiao & Weiwen Zhang, 2024. "Reducing potential dual-use risks in synthetic biology laboratory research: a dynamic model of analysis," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
    8. Zhang, Changwei & Chen, Huidong & Pang, Siyu & Su, Changsheng & Lv, Meng & An, Na & Wang, Kua & Cai, Di & Qin, Peiyong, 2020. "Importance of redefinition of corn stover harvest time to enhancing non-food bio-ethanol production," Renewable Energy, Elsevier, vol. 146(C), pages 1444-1450.
    9. Jin, Xianchun & Song, Jianing & Liu, Gao-Qiang, 2020. "Bioethanol production from rice straw through an enzymatic route mediated by enzymes developed in-house from Aspergillus fumigatus," Energy, Elsevier, vol. 190(C).
    10. Carrillo-Nieves, Danay & Rostro Alanís, Magdalena J. & de la Cruz Quiroz, Reynaldo & Ruiz, Héctor A. & Iqbal, Hafiz M.N. & Parra-Saldívar, Roberto, 2019. "Current status and future trends of bioethanol production from agro-industrial wastes in Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 63-74.
    11. Sikiru, Surajudeen & Abioye, Kunmi Joshua & Adedayo, Habeeb Bolaji & Adebukola, Sikiru Yesirat & Soleimani, Hassan & Anar, M., 2024. "Technology projection in biofuel production using agricultural waste materials as a source of energy sustainability: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    12. Zhang, Haiyan & Han, Lujia & Dong, Hongmin, 2021. "An insight to pretreatment, enzyme adsorption and enzymatic hydrolysis of lignocellulosic biomass: Experimental and modeling studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    13. Arnaldo Walter & Joaquim Seabra & Jansle Rocha & Marjorie Guarenghi & Nathália Vieira & Desirèe Damame & João Luís Santos, 2021. "Spatially Explicit Assessment of the Feasibility of Sustainable Aviation Fuels Production in Brazil: Results of Three Case Studies," Energies, MDPI, vol. 14(16), pages 1-21, August.
    14. Andrea Patané & Giorgio Jansen & Piero Conca & Giovanni Carapezza & Jole Costanza & Giuseppe Nicosia, 2019. "Multi-objective optimization of genome-scale metabolic models: the case of ethanol production," Annals of Operations Research, Springer, vol. 276(1), pages 211-227, May.
    15. Yang, Guang & Wang, Jianlong, 2018. "Various additives for improving dark fermentative hydrogen production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 130-146.
    16. Marietta Markiewicz & Łukasz Muślewski, 2019. "The Impact of Powering an Engine with Fuels from Renewable Energy Sources including its Software Modification on a Drive Unit Performance Parameters," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    17. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    18. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    19. Zane Vincevica-Gaile & Varvara Sachpazidou & Valdis Bisters & Maris Klavins & Olga Anne & Inga Grinfelde & Emil Hanc & William Hogland & Muhammad Asim Ibrahim & Yahya Jani & Mait Kriipsalu & Divya Pal, 2022. "Applying Macroalgal Biomass as an Energy Source: Utility of the Baltic Sea Beach Wrack for Thermochemical Conversion," Sustainability, MDPI, vol. 14(21), pages 1-18, October.
    20. Dhiman, Saurabh Sudha & David, Aditi & Braband, Vanessa W. & Hussein, Abdulmenan & Salem, David R. & Sani, Rajesh K., 2017. "Improved bioethanol production from corn stover: Role of enzymes, inducers and simultaneous product recovery," Applied Energy, Elsevier, vol. 208(C), pages 1420-1429.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s136403212300816x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.