IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p2068-d348377.html
   My bibliography  Save this article

PI Parameter Influence on Underfloor Heating Energy Consumption and Setpoint Tracking in nZEBs

Author

Listed:
  • Tuule Mall Kull

    (Nearly Zero Energy Buildings Research Group, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia)

  • Martin Thalfeldt

    (Nearly Zero Energy Buildings Research Group, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia)

  • Jarek Kurnitski

    (Nearly Zero Energy Buildings Research Group, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
    Department of Civil Engineering, Rakentajanaukio 4 A, Aalto University, FI-02150 Espoo, Finland)

Abstract

In rooms with underfloor heating (UFH), local on–off controllers most often regulate the air temperature with poor accuracy and energy penalties. It is known that proportional–integral (PI) controllers can regulate most processes more precisely. However, hydronic UFH systems have long time constants, especially in low-energy buildings, and PI parameters are not easy to set manually. In this work, several potential PI parameter estimation methods were applied, including optimizing the parameters in GenOpt, calculating the parameters based on simplified models, and tuning the parameters automatically in Matlab. For all found parameter combinations, the energy consumption and control precision were evaluated. Simpler methods were compared to the optimal solutions to find similar parameters. Compared with an on–off controller with a 0.5 K dead-band, the best PI parameter combination found was with a proportional gain of 18 and an integration time of 2300 s, which could decrease the energy consumption for heating by 9% and by 5% compared with default PI parameters. Moreover, while GenOpt was the best method to find the optimal parameters, it was also possible with a simple automatic test and calculation within a weekend. The test can be, for example, 6-h setbacks applied during the nights or weekend-long pseudo-random changes in the setpoint signal. The parameters can be calculated based on the simplified model from these tests using any well-known simple method. Results revealed that the UFH PI controller with the correct parameters started to work in a predictive fashion and the resulting room temperature curves were practically ideal.

Suggested Citation

  • Tuule Mall Kull & Martin Thalfeldt & Jarek Kurnitski, 2020. "PI Parameter Influence on Underfloor Heating Energy Consumption and Setpoint Tracking in nZEBs," Energies, MDPI, vol. 13(8), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2068-:d:348377
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/2068/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/2068/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nägele, Florian & Kasper, Thomas & Girod, Bastien, 2017. "Turning up the heat on obsolete thermostats: A simulation-based comparison of intelligent control approaches for residential heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1254-1268.
    2. Clauß, John & Stinner, Sebastian & Sartori, Igor & Georges, Laurent, 2019. "Predictive rule-based control to activate the energy flexibility of Norwegian residential buildings: Case of an air-source heat pump and direct electric heating," Applied Energy, Elsevier, vol. 237(C), pages 500-518.
    3. Thonipara, Anita & Runst, Petrik & Ochsner, Christian & Bizer, Kilian, 2019. "Energy efficiency of residential buildings in the European Union – An exploratory analysis of cross-country consumption patterns," Energy Policy, Elsevier, vol. 129(C), pages 1156-1167.
    4. Dounis, A.I. & Caraiscos, C., 2009. "Advanced control systems engineering for energy and comfort management in a building environment--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1246-1261, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jonghoon Ahn, 2022. "A Network-Based Strategy to Increase the Sustainability of Building Supply Air Systems Responding to Unexpected Temperature Patterns," Sustainability, MDPI, vol. 14(22), pages 1-13, November.
    2. Sung Hoon Yoon & Jonghoon Ahn, 2020. "Comparative Analysis of Energy Use and Human Comfort by an Intelligent Control Model at the Change of Season," Energies, MDPI, vol. 13(22), pages 1-15, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clara Ceccolini & Roozbeh Sangi, 2022. "Benchmarking Approaches for Assessing the Performance of Building Control Strategies: A Review," Energies, MDPI, vol. 15(4), pages 1-30, February.
    2. Muhammad Fayaz & DoHyeun Kim, 2018. "Energy Consumption Optimization and User Comfort Management in Residential Buildings Using a Bat Algorithm and Fuzzy Logic," Energies, MDPI, vol. 11(1), pages 1-22, January.
    3. Runst, Petrik & Höhle, David, 2022. "The German eco tax and its impact on CO2 emissions," Energy Policy, Elsevier, vol. 160(C).
    4. Dorothée Charlier & Mouez Fodha & Djamel Kirat, 2023. "Residential CO2 Emissions in Europe and Carbon Taxation: A Country-Level Assessment," The Energy Journal, , vol. 44(5), pages 187-206, September.
    5. Murat Kunelbayev & Yedilkhan Amirgaliyev & Talgat Sundetov, 2022. "Improving the Efficiency of Environmental Temperature Control in Homes and Buildings," Energies, MDPI, vol. 15(23), pages 1-15, November.
    6. Bhowmik, Chiranjib & Bhowmik, Sumit & Ray, Amitava & Pandey, Krishna Murari, 2017. "Optimal green energy planning for sustainable development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 796-813.
    7. Shunling Ruan & Haiyan Xie & Song Jiang, 2017. "Integrated Proactive Control Model for Energy Efficiency Processes in Facilities Management: Applying Dynamic Exponential Smoothing Optimization," Sustainability, MDPI, vol. 9(9), pages 1-22, September.
    8. Schäuble, Dominik & Marian, Adela & Cremonese, Lorenzo, 2020. "Conditions for a cost-effective application of smart thermostat systems in residential buildings," Applied Energy, Elsevier, vol. 262(C).
    9. Runst, Petrik & Thonipara, Anita, 2020. "Dosis facit effectum why the size of the carbon tax matters: Evidence from the Swedish residential sector," Energy Economics, Elsevier, vol. 91(C).
    10. Gianluca Serale & Massimo Fiorentini & Alfonso Capozzoli & Daniele Bernardini & Alberto Bemporad, 2018. "Model Predictive Control (MPC) for Enhancing Building and HVAC System Energy Efficiency: Problem Formulation, Applications and Opportunities," Energies, MDPI, vol. 11(3), pages 1-35, March.
    11. De Lorenzi, Andrea & Gambarotta, Agostino & Morini, Mirko & Rossi, Michele & Saletti, Costanza, 2020. "Setup and testing of smart controllers for small-scale district heating networks: An integrated framework," Energy, Elsevier, vol. 205(C).
    12. Chia-Nan Wang & Thi-Duong Nguyen & Min-Chun Yu, 2019. "Energy Use Efficiency Past-to-Future Evaluation: An International Comparison," Energies, MDPI, vol. 12(19), pages 1-15, October.
    13. Manzano-Agugliaro, Francisco & Montoya, Francisco G. & Sabio-Ortega, Andrés & García-Cruz, Amós, 2015. "Review of bioclimatic architecture strategies for achieving thermal comfort," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 736-755.
    14. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2015. "Intelligent energy and thermal comfort management in grid-connected microgrids with heterogeneous occupancy schedule," Applied Energy, Elsevier, vol. 149(C), pages 194-203.
    15. Zhou, Bin & Li, Wentao & Chan, Ka Wing & Cao, Yijia & Kuang, Yonghong & Liu, Xi & Wang, Xiong, 2016. "Smart home energy management systems: Concept, configurations, and scheduling strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 30-40.
    16. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    17. Altwies, Joy E. & Nemet, Gregory F., 2013. "Innovation in the U.S. building sector: An assessment of patent citations in building energy control technology," Energy Policy, Elsevier, vol. 52(C), pages 819-831.
    18. Juan-Carlos Fraile & Julio San-José & Ana González-Alonso, 2014. "A Boiler Room in a 600-Bed Hospital Complex: Study, Analysis, and Implementation of Energy Efficiency Improvements," Energies, MDPI, vol. 7(5), pages 1-22, May.
    19. Jiang, Lai & Yao, Runming & Liu, Kecheng & McCrindle, Rachel, 2017. "An Epistemic-Deontic-Axiologic (EDA) agent-based energy management system in office buildings," Applied Energy, Elsevier, vol. 205(C), pages 440-452.
    20. Enescu, Diana, 2017. "A review of thermal comfort models and indicators for indoor environments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1353-1379.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2068-:d:348377. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.