IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p1959-d346287.html
   My bibliography  Save this article

On the Sensitivity of Local Flexibility Markets to Forecast Error: A Bi-Level Optimization Approach

Author

Listed:
  • Delaram Azari

    (Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6700 AA Wageningen, The Netherlands)

  • Shahab Shariat Torbaghan

    (Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6700 AA Wageningen, The Netherlands
    Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
    EnergyVille, 3600 Genk, Belgium)

  • Hans Cappon

    (Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6700 AA Wageningen, The Netherlands)

  • Karel J. Keesman

    (Mathematical and Statistical Methods—Biometris, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands)

  • Madeleine Gibescu

    (Energy and Resources, Copernicus Institute of Sustainable Development, Utrecht University, Vening Meinesz building 8.94, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands)

  • Huub Rijnaarts

    (Environmental Technology, Wageningen University and Research, Bornse Weilanden 9, 6700 AA Wageningen, The Netherlands)

Abstract

The large-scale integration of intermittent distributed energy resources has led to increased uncertainty in the planning and operation of distribution networks. The optimal flexibility dispatch is a recently introduced, power flow-based method that a distribution system operator can use to effectively determine the amount of flexibility it needs to procure from the controllable resources available on the demand side. However, the drawback of this method is that the optimal flexibility dispatch is inexact due to the relaxation error inherent in the second-order cone formulation. In this paper we propose a novel bi-level optimization problem, where the upper level problem seeks to minimize the relaxation error and the lower level solves the earlier introduced convex second-order cone optimal flexibility dispatch (SOC-OFD) problem. To make the problem tractable, we introduce an innovative reformulation to recast the bi-level problem as a non-linear, single level optimization problem which results in no loss of accuracy. We subsequently investigate the sensitivity of the optimal flexibility schedules and the locational flexibility prices with respect to uncertainty in load forecast and flexibility ranges of the demand response providers which are input parameters to the problem. The sensitivity analysis is performed based on the perturbed Karush–Kuhn–Tucker (KKT) conditions. We investigate the feasibility and scalability of the proposed method in three case studies of standardized 9-bus, 30-bus, and 300-bus test systems. Simulation results in terms of local flexibility prices are interpreted in economic terms and show the effectiveness of the proposed approach.

Suggested Citation

  • Delaram Azari & Shahab Shariat Torbaghan & Hans Cappon & Karel J. Keesman & Madeleine Gibescu & Huub Rijnaarts, 2020. "On the Sensitivity of Local Flexibility Markets to Forecast Error: A Bi-Level Optimization Approach," Energies, MDPI, vol. 13(8), pages 1-18, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1959-:d:346287
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/1959/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/1959/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pol Olivella-Rosell & Pau Lloret-Gallego & Íngrid Munné-Collado & Roberto Villafafila-Robles & Andreas Sumper & Stig Ødegaard Ottessen & Jayaprakash Rajasekharan & Bernt A. Bremdal, 2018. "Local Flexibility Market Design for Aggregators Providing Multiple Flexibility Services at Distribution Network Level," Energies, MDPI, vol. 11(4), pages 1-19, April.
    2. Ayón, X. & Gruber, J.K. & Hayes, B.P. & Usaola, J. & Prodanović, M., 2017. "An optimal day-ahead load scheduling approach based on the flexibility of aggregate demands," Applied Energy, Elsevier, vol. 198(C), pages 1-11.
    3. Rosa Morales González & Shahab Shariat Torbaghan & Madeleine Gibescu & Sjef Cobben, 2016. "Harnessing the Flexibility of Thermostatic Loads in Microgrids with Solar Power Generation," Energies, MDPI, vol. 9(7), pages 1-24, July.
    4. Good, Nicholas & Zhang, Lingxi & Navarro-Espinosa, Alejandro & Mancarella, Pierluigi, 2015. "High resolution modelling of multi-energy domestic demand profiles," Applied Energy, Elsevier, vol. 137(C), pages 193-210.
    5. Luce Brotcorne & Martine Labbé & Patrice Marcotte & Gilles Savard, 2008. "Joint Design and Pricing on a Network," Operations Research, INFORMS, vol. 56(5), pages 1104-1115, October.
    6. Simone Minniti & Niyam Haque & Phuong Nguyen & Guus Pemen, 2018. "Local Markets for Flexibility Trading: Key Stages and Enablers," Energies, MDPI, vol. 11(11), pages 1-21, November.
    7. Ramos, Ariana & De Jonghe, Cedric & Gómez, Virginia & Belmans, Ronnie, 2016. "Realizing the smart grid's potential: Defining local markets for flexibility," Utilities Policy, Elsevier, vol. 40(C), pages 26-35.
    8. Korkas, Christos D. & Baldi, Simone & Michailidis, Iakovos & Kosmatopoulos, Elias B., 2016. "Occupancy-based demand response and thermal comfort optimization in microgrids with renewable energy sources and energy storage," Applied Energy, Elsevier, vol. 163(C), pages 93-104.
    9. Juhar Abdella & Khaled Shuaib, 2018. "Peer to Peer Distributed Energy Trading in Smart Grids: A Survey," Energies, MDPI, vol. 11(6), pages 1-22, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heinrich, Carsten & Ziras, Charalampos & Syrri, Angeliki L.A. & Bindner, Henrik W., 2020. "EcoGrid 2.0: A large-scale field trial of a local flexibility market," Applied Energy, Elsevier, vol. 261(C).
    2. Gržanić, M. & Capuder, T. & Zhang, N. & Huang, W., 2022. "Prosumers as active market participants: A systematic review of evolution of opportunities, models and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    3. Domagoj Badanjak & Hrvoje Pandžić, 2021. "Distribution-Level Flexibility Markets—A Review of Trends, Research Projects, Key Stakeholders and Open Questions," Energies, MDPI, vol. 14(20), pages 1-26, October.
    4. Pavlos S. Georgilakis, 2020. "Review of Computational Intelligence Methods for Local Energy Markets at the Power Distribution Level to Facilitate the Integration of Distributed Energy Resources: State-of-the-art and Future Researc," Energies, MDPI, vol. 13(1), pages 1-37, January.
    5. Palm, J. & Kojonsaari, A.-R. & Öhrlund, I. & Fowler, N. & Bartusch, C., 2023. "Drivers and barriers to participation in Sweden's local flexibility markets for electricity," Utilities Policy, Elsevier, vol. 82(C).
    6. Nayeem Rahman & Rodrigo Rabetino & Arto Rajala & Jukka Partanen, 2021. "Ushering in a New Dawn: Demand-Side Local Flexibility Platform Governance and Design in the Finnish Energy Markets," Energies, MDPI, vol. 14(15), pages 1-23, July.
    7. Hosna Khajeh & Hannu Laaksonen & Amin Shokri Gazafroudi & Miadreza Shafie-khah, 2019. "Towards Flexibility Trading at TSO-DSO-Customer Levels: A Review," Energies, MDPI, vol. 13(1), pages 1-19, December.
    8. Li, Han & Johra, Hicham & de Andrade Pereira, Flavia & Hong, Tianzhen & Le Dréau, Jérôme & Maturo, Anthony & Wei, Mingjun & Liu, Yapan & Saberi-Derakhtenjani, Ali & Nagy, Zoltan & Marszal-Pomianowska,, 2023. "Data-driven key performance indicators and datasets for building energy flexibility: A review and perspectives," Applied Energy, Elsevier, vol. 343(C).
    9. Lüth, Alexandra & Zepter, Jan Martin & Crespo del Granado, Pedro & Egging, Ruud, 2018. "Local electricity market designs for peer-to-peer trading: The role of battery flexibility," Applied Energy, Elsevier, vol. 229(C), pages 1233-1243.
    10. Ayman Esmat & Julio Usaola & Mª Ángeles Moreno, 2018. "A Decentralized Local Flexibility Market Considering the Uncertainty of Demand," Energies, MDPI, vol. 11(8), pages 1-32, August.
    11. Faia, Ricardo & Lezama, Fernando & Soares, João & Pinto, Tiago & Vale, Zita, 2024. "Local electricity markets: A review on benefits, barriers, current trends and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    12. Ziras, Charalampos & Heinrich, Carsten & Bindner, Henrik W., 2021. "Why baselines are not suited for local flexibility markets," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    13. Longjian Piao & Laurens de Vries & Mathijs de Weerdt & Neil Yorke-Smith, 2019. "Electricity Markets for DC Distribution Systems: Design Options," Energies, MDPI, vol. 12(14), pages 1-16, July.
    14. Cruz, Marco R.M. & Fitiwi, Desta Z. & Santos, Sérgio F. & Catalão, João P.S., 2018. "A comprehensive survey of flexibility options for supporting the low-carbon energy future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 338-353.
    15. Jin, Xiaolong & Wu, Qiuwei & Jia, Hongjie, 2020. "Local flexibility markets: Literature review on concepts, models and clearing methods," Applied Energy, Elsevier, vol. 261(C).
    16. Zhang, Lingxi & Good, Nicholas & Mancarella, Pierluigi, 2019. "Building-to-grid flexibility: Modelling and assessment metrics for residential demand response from heat pump aggregations," Applied Energy, Elsevier, vol. 233, pages 709-723.
    17. Erik Heilmann & Nikolai Klempp & Kai Hufendiek & Heike Wetzel, 2022. "Long-term Contracts for Network-supportive Flexibility in Local Flexibility Markets," MAGKS Papers on Economics 202224, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    18. Aikaterini Forouli & Emmanouil A. Bakirtzis & Georgios Papazoglou & Konstantinos Oureilidis & Vasileios Gkountis & Luisa Candido & Eloi Delgado Ferrer & Pandelis Biskas, 2021. "Assessment of Demand Side Flexibility in European Electricity Markets: A Country Level Review," Energies, MDPI, vol. 14(8), pages 1-23, April.
    19. Andreas Zeiselmair & Simon Köppl, 2021. "Constrained Optimization as the Allocation Method in Local Flexibility Markets," Energies, MDPI, vol. 14(13), pages 1-21, June.
    20. Okur, Özge & Heijnen, Petra & Lukszo, Zofia, 2021. "Aggregator’s business models in residential and service sectors: A review of operational and financial aspects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:1959-:d:346287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.