IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1492-d335415.html
   My bibliography  Save this article

A Building Block Method for Modeling and Small-Signal Stability Analysis of the Autonomous Microgrid Operation

Author

Listed:
  • Bojan Banković

    (Department of Power Engineering, Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva 14, 18115 Niš, Serbia)

  • Filip Filipović

    (Department of Power Engineering, Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva 14, 18115 Niš, Serbia)

  • Nebojša Mitrović

    (Department of Power Engineering, Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva 14, 18115 Niš, Serbia)

  • Milutin Petronijević

    (Department of Power Engineering, Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva 14, 18115 Niš, Serbia)

  • Vojkan Kostić

    (Department of Power Engineering, Faculty of Electronic Engineering, University of Niš, Aleksandra Medvedeva 14, 18115 Niš, Serbia)

Abstract

The task of the whole microgrid state-space matrix creation is usually done in a preferred textual programming language, and it presents a complicated, time-consuming, and error-prone job for a researcher without good coding practices. To ease the modeling task, contribute to the adaptation of new microgrid structures, control algorithms, and devices, and to improve the flexibility of the model, a graphical element building block method is proposed in this paper. With the proposed approach model creation of the whole microgrid is reduced to the creation of the individual element state-space model that is linked with other elements in a logical way with a graphical connection. Elements are then grouped into meaningful wholes and encapsulated with the appropriate graphical user interface that enables easy parameter modification and model complexity change. More detailed DC/DC and DC/AC models of converters than those in the literature concerning microgrid stability are presented in this paper. Those converters are incorporated in a microgrid, whose model is created using the proposed approach in MATLAB/Simulink. The dynamic response examination of the model remains easy, just as with all Simulink models, while for the linear system analysis, a specialized toolbox is used.

Suggested Citation

  • Bojan Banković & Filip Filipović & Nebojša Mitrović & Milutin Petronijević & Vojkan Kostić, 2020. "A Building Block Method for Modeling and Small-Signal Stability Analysis of the Autonomous Microgrid Operation," Energies, MDPI, vol. 13(6), pages 1-28, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1492-:d:335415
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1492/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1492/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    2. Shuai, Zhikang & Sun, Yingyun & Shen, Z. John & Tian, Wei & Tu, Chunming & Li, Yan & Yin, Xin, 2016. "Microgrid stability: Classification and a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 167-179.
    3. Seyfettin Vadi & Sanjeevikumar Padmanaban & Ramazan Bayindir & Frede Blaabjerg & Lucian Mihet-Popa, 2019. "A Review on Optimization and Control Methods Used to Provide Transient Stability in Microgrids," Energies, MDPI, vol. 12(18), pages 1-20, September.
    4. Xiaochao Hou & Yao Sun & Wenbin Yuan & Hua Han & Chaolu Zhong & Josep M. Guerrero, 2016. "Conventional P -ω/ Q-V Droop Control in Highly Resistive Line of Low-Voltage Converter-Based AC Microgrid," Energies, MDPI, vol. 9(11), pages 1-19, November.
    5. Brearley, Belwin J. & Prabu, R. Raja, 2017. "A review on issues and approaches for microgrid protection," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 988-997.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    2. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    3. Barra, P.H.A. & Coury, D.V. & Fernandes, R.A.S., 2020. "A survey on adaptive protection of microgrids and distribution systems with distributed generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 118(C).
    4. Jong Ju Kim & June Ho Park, 2021. "A Novel Structure of a Power System Stabilizer for Microgrids," Energies, MDPI, vol. 14(4), pages 1-33, February.
    5. Álex Omar Topa Gavilema & José Domingo Álvarez & José Luis Torres Moreno & Manuel Pérez García, 2021. "Towards Optimal Management in Microgrids: An Overview," Energies, MDPI, vol. 14(16), pages 1-25, August.
    6. Kanakadhurga, Dharmaraj & Prabaharan, Natarajan, 2022. "Demand side management in microgrid: A critical review of key issues and recent trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Bandeiras, F. & Pinheiro, E. & Gomes, M. & Coelho, P. & Fernandes, J., 2020. "Review of the cooperation and operation of microgrid clusters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Wang, Richard & Hsu, Shu-Chien & Zheng, Saina & Chen, Jieh-Haur & Li, Xuran Ivan, 2020. "Renewable energy microgrids: Economic evaluation and decision making for government policies to contribute to affordable and clean energy," Applied Energy, Elsevier, vol. 274(C).
    9. Lin Herenčić & Perica Ilak & Ivan Rajšl, 2019. "Effects of Local Electricity Trading on Power Flows and Voltage Levels for Different Elasticities and Prices," Energies, MDPI, vol. 12(24), pages 1-19, December.
    10. Jose L. López-Prado & Jorge I. Vélez & Guisselle A. Garcia-Llinás, 2020. "Reliability Evaluation in Distribution Networks with Microgrids: Review and Classification of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.
    11. El-Bidairi, Kutaiba S. & Nguyen, Hung Duc & Mahmoud, Thair S. & Jayasinghe, S.D.G. & Guerrero, Josep M., 2020. "Optimal sizing of Battery Energy Storage Systems for dynamic frequency control in an islanded microgrid: A case study of Flinders Island, Australia," Energy, Elsevier, vol. 195(C).
    12. Alessandro Labella & Filip Filipovic & Milutin Petronijevic & Andrea Bonfiglio & Renato Procopio, 2020. "An MPC Approach for Grid-Forming Inverters: Theory and Experiment," Energies, MDPI, vol. 13(9), pages 1-17, May.
    13. Farhat Afzah Samoon & Ikhlaq Hussain & Sheikh Javed Iqbal, 2023. "ILA Optimisation Based Control for Enhancing DC Link Voltage with Seamless and Adaptive VSC Control in a PV-BES Based AC Microgrid," Energies, MDPI, vol. 16(21), pages 1-23, October.
    14. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    15. Hussain Abdalla Sajwani & Bassel Soudan & Abdul Ghani Olabi, 2024. "Empowering Sustainability: Understanding Determinants of Consumer Investment in Microgrid Technology in the UAE," Energies, MDPI, vol. 17(9), pages 1-28, May.
    16. Ray, Manojit & Chakraborty, Basab, 2022. "Impact of demand flexibility and tiered resilience on solar photovoltaic adoption in humanitarian settlements," Renewable Energy, Elsevier, vol. 193(C), pages 895-912.
    17. Dimitrios Trigkas & Chrysovalantou Ziogou & Spyros Voutetakis & Simira Papadopoulou, 2021. "Virtual Energy Storage in RES-Powered Smart Grids with Nonlinear Model Predictive Control," Energies, MDPI, vol. 14(4), pages 1-22, February.
    18. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    19. Matija Kostelac & Lin Herenčić & Tomislav Capuder, 2022. "Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options," Energies, MDPI, vol. 15(4), pages 1-17, February.
    20. Ahmed Y. Hatata & Mohamed A. Essa & Bishoy E. Sedhom, 2022. "Implementation and Design of FREEDM System Differential Protection Method Based on Internet of Things," Energies, MDPI, vol. 15(15), pages 1-24, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1492-:d:335415. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.