IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i11p943-d82679.html
   My bibliography  Save this article

Conventional P -ω/ Q-V Droop Control in Highly Resistive Line of Low-Voltage Converter-Based AC Microgrid

Author

Listed:
  • Xiaochao Hou

    (School of Information Science and Engineering, Central South University, Changsha 410083, China)

  • Yao Sun

    (School of Information Science and Engineering, Central South University, Changsha 410083, China)

  • Wenbin Yuan

    (School of Information Science and Engineering, Central South University, Changsha 410083, China)

  • Hua Han

    (School of Information Science and Engineering, Central South University, Changsha 410083, China)

  • Chaolu Zhong

    (School of Information Science and Engineering, Central South University, Changsha 410083, China)

  • Josep M. Guerrero

    (Department of Energy Technology, Aalborg University, DK-9220 Aalborg East, Denmark)

Abstract

In low-voltage converter-based alternating current (AC) microgrids with resistive distribution lines, the P - V droop with Q - f boost (VPD/FQB) is the most common method for load sharing. However, it cannot achieve the active power sharing proportionally. To overcome this drawback, the conventional P -ω/ Q - V droop control is adopted in the low-voltage AC microgrid. As a result, the active power sharing among the distributed generators (DGs) is easily obtained without communication. More importantly, this study clears up the previous misunderstanding that conventional P -ω/ Q - V droop control is only applicable to microgrids with highly inductive lines, and lays a foundation for the application of conventional droop control under different line impedances. Moreover, in order to guarantee the accurate reactive power sharing, a guide for designing Q - V droop gains is given, and virtual resistance is adopted to shape the desired output impedance. Finally, the effects of power sharing and transient response are verified through simulations and experiments in converter-based AC Microgrid.

Suggested Citation

  • Xiaochao Hou & Yao Sun & Wenbin Yuan & Hua Han & Chaolu Zhong & Josep M. Guerrero, 2016. "Conventional P -ω/ Q-V Droop Control in Highly Resistive Line of Low-Voltage Converter-Based AC Microgrid," Energies, MDPI, vol. 9(11), pages 1-19, November.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:943-:d:82679
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/11/943/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/11/943/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yujin Lim & Hak-Man Kim & Tetsuo Kinoshita, 2014. "Distributed Load-Shedding System for Agent-Based Autonomous Microgrid Operations," Energies, MDPI, vol. 7(1), pages 1-17, January.
    2. Bingke Yan & Bo Wang & Lin Zhu & Hesen Liu & Yilu Liu & Xingpei Ji & Dichen Liu, 2015. "A Novel, Stable, and Economic Power Sharing Scheme for an Autonomous Microgrid in the Energy Internet," Energies, MDPI, vol. 8(11), pages 1-24, November.
    3. Nah-Oak Song & Ji-Hye Lee & Hak-Man Kim & Yong Hoon Im & Jae Yong Lee, 2015. "Optimal Energy Management of Multi-Microgrids with Sequentially Coordinated Operations," Energies, MDPI, vol. 8(8), pages 1-20, August.
    4. Zhiwen Yu & Qian Ai & Jinxia Gong & Longjian Piao, 2016. "A Novel Secondary Control for Microgrid Based on Synergetic Control of Multi-Agent System," Energies, MDPI, vol. 9(4), pages 1-14, March.
    5. Changsun Ahn & Huei Peng, 2013. "Decentralized and Real-Time Power Dispatch Control for an Islanded Microgrid Supported by Distributed Power Sources," Energies, MDPI, vol. 6(12), pages 1-16, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alessandro Labella & Filip Filipovic & Milutin Petronijevic & Andrea Bonfiglio & Renato Procopio, 2020. "An MPC Approach for Grid-Forming Inverters: Theory and Experiment," Energies, MDPI, vol. 13(9), pages 1-17, May.
    2. Demin Li & Bo Zhao & Zaijun Wu & Xuesong Zhang & Leiqi Zhang, 2017. "An Improved Droop Control Strategy for Low-Voltage Microgrids Based on Distributed Secondary Power Optimization Control," Energies, MDPI, vol. 10(9), pages 1-18, September.
    3. Fabio Bignucolo & Alberto Cerretti & Massimiliano Coppo & Andrea Savio & Roberto Turri, 2017. "Impact of Distributed Generation Grid Code Requirements on Islanding Detection in LV Networks," Energies, MDPI, vol. 10(2), pages 1-16, January.
    4. Bojan Banković & Filip Filipović & Nebojša Mitrović & Milutin Petronijević & Vojkan Kostić, 2020. "A Building Block Method for Modeling and Small-Signal Stability Analysis of the Autonomous Microgrid Operation," Energies, MDPI, vol. 13(6), pages 1-28, March.
    5. Colin Levis & Cathal O’Loughlin & Terence O’Donnell & Martin Hill, 2019. "An Enhanced Two-Stage Grid-Connected Linear Parameter Varying Photovoltaic System Model for Frequency Support Strategy Evaluation," Energies, MDPI, vol. 12(24), pages 1-26, December.
    6. Youn-Ok Choi & Jaehong Kim, 2017. "Output Impedance Control Method of Inverter-Based Distributed Generators for Autonomous Microgrid," Energies, MDPI, vol. 10(7), pages 1-15, July.
    7. Quynh T.T Tran & Maria Luisa Di Silvestre & Eleonora Riva Sanseverino & Gaetano Zizzo & Thanh Nam Pham, 2018. "Driven Primary Regulation for Minimum Power Losses Operation in Islanded Microgrids," Energies, MDPI, vol. 11(11), pages 1-17, October.
    8. Andrea Bonfiglio & Massimo Brignone & Marco Invernizzi & Alessandro Labella & Daniele Mestriner & Renato Procopio, 2017. "A Simplified Microgrid Model for the Validation of Islanded Control Logics," Energies, MDPI, vol. 10(8), pages 1-28, August.
    9. Basit Ali & Muhammad Waseem Ashraf & Shahzadi Tayyaba, 2019. "Simulation, Fuzzy Analysis and Development of ZnO Nanostructure-based Piezoelectric MEMS Energy Harvester," Energies, MDPI, vol. 12(5), pages 1-15, February.
    10. Rui Hou & Huihui Song & Thai-Thanh Nguyen & Yanbin Qu & Hak-Man Kim, 2017. "Robustness Improvement of Superconducting Magnetic Energy Storage System in Microgrids Using an Energy Shaping Passivity-Based Control Strategy," Energies, MDPI, vol. 10(5), pages 1-23, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hua Han & Lang Li & Lina Wang & Mei Su & Yue Zhao & Josep M. Guerrero, 2017. "A Novel Decentralized Economic Operation in Islanded AC Microgrids," Energies, MDPI, vol. 10(6), pages 1-18, June.
    2. Yao Liu & Xiaochao Hou & Xiaofeng Wang & Chao Lin & Josep M. Guerrero, 2016. "A Coordinated Control for Photovoltaic Generators and Energy Storages in Low-Voltage AC/DC Hybrid Microgrids under Islanded Mode," Energies, MDPI, vol. 9(8), pages 1-15, August.
    3. Liyuan Gao & Yao Liu & Huisong Ren & Josep M. Guerrero, 2017. "A DC Microgrid Coordinated Control Strategy Based on Integrator Current-Sharing," Energies, MDPI, vol. 10(8), pages 1-17, August.
    4. Xi Wu & Ping Jiang & Jing Lu, 2014. "Multiagent-Based Distributed Load Shedding for Islanded Microgrids," Energies, MDPI, vol. 7(9), pages 1-13, September.
    5. Mi Dong & Li Li & Lina Wang & Dongran Song & Zhangjie Liu & Xiaoyu Tian & Zhengguo Li & Yinghua Wang, 2018. "A Distributed Secondary Control Algorithm for Automatic Generation Control Considering EDP and Automatic Voltage Control in an AC Microgrid," Energies, MDPI, vol. 11(4), pages 1-18, April.
    6. Ying-Yi Hong & Yan-Hung Wei & Yung-Ruei Chang & Yih-Der Lee & Pang-Wei Liu, 2014. "Fault Detection and Location by Static Switches in Microgrids Using Wavelet Transform and Adaptive Network-Based Fuzzy Inference System," Energies, MDPI, vol. 7(4), pages 1-18, April.
    7. Nah-Oak Song & Ji-Hye Lee & Hak-Man Kim, 2016. "Optimal Electric and Heat Energy Management of Multi-Microgrids with Sequentially-Coordinated Operations," Energies, MDPI, vol. 9(6), pages 1-18, June.
    8. Cheng Lv & Xiaodong Zheng & Nengling Tai & Shi Chen, 2018. "Single-Ended Protection Scheme for VSC-Based DC Microgrid Lines," Energies, MDPI, vol. 11(6), pages 1-17, June.
    9. Jiaxin Lu & Weijun Wang & Yingchao Zhang & Song Cheng, 2017. "Multi-Objective Optimal Design of Stand-Alone Hybrid Energy System Using Entropy Weight Method Based on HOMER," Energies, MDPI, vol. 10(10), pages 1-17, October.
    10. Akhtar Hussain & Van-Hai Bui & Hak-Man Kim, 2016. "Robust Optimization-Based Scheduling of Multi-Microgrids Considering Uncertainties," Energies, MDPI, vol. 9(4), pages 1-21, April.
    11. Ezenwa Udoha & Saptarshi Das & Mohammad Abusara, 2024. "Centralised Control and Energy Management of Multiple Interconnected Standalone AC Microgrids," Energies, MDPI, vol. 17(20), pages 1-26, October.
    12. Yun Yang & Chengxiong Mao & Dan Wang & Jie Tian & Ming Yang, 2017. "Modeling and Analysis of the Common Mode Voltage in a Cascaded H-Bridge Electronic Power Transformer," Energies, MDPI, vol. 10(9), pages 1-16, September.
    13. Andrea Bonfiglio & Massimo Brignone & Marco Invernizzi & Alessandro Labella & Daniele Mestriner & Renato Procopio, 2017. "A Simplified Microgrid Model for the Validation of Islanded Control Logics," Energies, MDPI, vol. 10(8), pages 1-28, August.
    14. Lei Chen & Xiude Tu & Hongkun Chen & Jun Yang & Yayi Wu & Xin Shu & Li Ren, 2016. "Technical Evaluation of Superconducting Fault Current Limiters Used in a Micro-Grid by Considering the Fault Characteristics of Distributed Generation, Energy Storage and Power Loads," Energies, MDPI, vol. 9(10), pages 1-21, September.
    15. Jinyeong Lee & Kyungcheol Shin & Young-Min Wi, 2024. "Decentralized Operations of Industrial Complex Microgrids Considering Corporate Power Purchase Agreements for Renewable Energy 100% Initiatives in South Korea," Sustainability, MDPI, vol. 16(13), pages 1-23, June.
    16. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    17. Hong-Chao Gao & Joon-Ho Choi & Sang-Yun Yun & Seon-Ju Ahn, 2020. "A New Power Sharing Scheme of Multiple Microgrids and an Iterative Pairing-Based Scheduling Method," Energies, MDPI, vol. 13(7), pages 1-20, April.
    18. Wang, Linyuan & Zhao, Lin & Mao, Guozhu & Zuo, Jian & Du, Huibin, 2017. "Way to accomplish low carbon development transformation: A bibliometric analysis during 1995–2014," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 57-69.
    19. Lei Chen & Hongkun Chen & Jun Yang & Yanjuan Yu & Kaiwei Zhen & Yang Liu & Li Ren, 2017. "Coordinated Control of Superconducting Fault Current Limiter and Superconducting Magnetic Energy Storage for Transient Performance Enhancement of Grid-Connected Photovoltaic Generation System," Energies, MDPI, vol. 10(1), pages 1-23, January.
    20. Im, Yong-Hoon & Liu, Jie, 2018. "Feasibility study on the low temperature district heating and cooling system with bi-lateral heat trades model," Energy, Elsevier, vol. 153(C), pages 988-999.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:11:p:943-:d:82679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.