IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i18p3582-d268783.html
   My bibliography  Save this article

A Review on Optimization and Control Methods Used to Provide Transient Stability in Microgrids

Author

Listed:
  • Seyfettin Vadi

    (Department of Electronics and Automation, Vocational School of Technical Sciences, Gazi University, 06500 Ankara, Turkey)

  • Sanjeevikumar Padmanaban

    (Department of Energy Technology, Aalborg University, 6700 Esbjerg, Denmark)

  • Ramazan Bayindir

    (Department of Electrical and Electronics Engineering, Faculty of Technology, Gazi University, 06500 Ankara, Turkey)

  • Frede Blaabjerg

    (Center of Reliable Power Electronics (CORPE), Department of Energy Technology, Aalborg University, 9220 Aalborg, Denmark)

  • Lucian Mihet-Popa

    (Faculty of Engineering, Østfold University College, Kobberslagerstredet 5, 1671 Kråkeroy-Fredrikstad, Norway)

Abstract

Microgrids are distribution networks consisting of distributed energy sources such as photovoltaic and wind turbines, that have traditionally been one of the most popular sources of energy. Furthermore, microgrids consist of energy storage systems and loads (e.g., industrial and residential) that may operate in grid-connected mode or islanded mode. While microgrids are an efficient source in terms of inexpensive, clean and renewable energy for distributed renewable energy sources that are connected to the existing grid, these renewable energy sources also cause many difficulties to the microgrid due to their characteristics. These difficulties mainly include voltage collapses, voltage and frequency fluctuations and phase difference faults in both islanded mode and in the grid-connected mode operations. Stability of the microgrid structure is necessary for providing transient stability using intelligent optimization methods to eliminate the abovementioned difficulties that affect power quality. This paper presents optimization and control techniques that can be used to provide transient stability in the islanded or grid-connected mode operations of a microgrid comprising renewable energy sources. The results obtained from these techniques were compared, analyzing studies in the literature and finding the advantages and disadvantages of the various methods presented. Thus, a comprehensive review of research on microgrid stability is presented to identify and guide future studies.

Suggested Citation

  • Seyfettin Vadi & Sanjeevikumar Padmanaban & Ramazan Bayindir & Frede Blaabjerg & Lucian Mihet-Popa, 2019. "A Review on Optimization and Control Methods Used to Provide Transient Stability in Microgrids," Energies, MDPI, vol. 12(18), pages 1-20, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3582-:d:268783
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/18/3582/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/18/3582/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luu Ngoc An & Tran Quoc Tuan, 2018. "Dynamic Programming for Optimal Energy Management of Hybrid Wind–PV–Diesel–Battery," Energies, MDPI, vol. 11(11), pages 1-16, November.
    2. Rokrok, Ebrahim & Shafie-khah, Miadreza & Catalão, João P.S., 2018. "Review of primary voltage and frequency control methods for inverter-based islanded microgrids with distributed generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3225-3235.
    3. Fathima, A. Hina & Palanisamy, K., 2015. "Optimization in microgrids with hybrid energy systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 431-446.
    4. Sharafi, Masoud & ELMekkawy, Tarek Y., 2014. "Multi-objective optimal design of hybrid renewable energy systems using PSO-simulation based approach," Renewable Energy, Elsevier, vol. 68(C), pages 67-79.
    5. Zahraee, S.M. & Khalaji Assadi, M. & Saidur, R., 2016. "Application of Artificial Intelligence Methods for Hybrid Energy System Optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 617-630.
    6. Dhakouani, Asma & Znouda, Essia & Bouden, Chiheb, 2019. "Impacts of energy efficiency policies on the integration of renewable energy," Energy Policy, Elsevier, vol. 133(C).
    7. Dufo-López, Rodolfo & Cristóbal-Monreal, Iván R. & Yusta, José M., 2016. "Optimisation of PV-wind-diesel-battery stand-alone systems to minimise cost and maximise human development index and job creation," Renewable Energy, Elsevier, vol. 94(C), pages 280-293.
    8. Fadaee, M. & Radzi, M.A.M., 2012. "Multi-objective optimization of a stand-alone hybrid renewable energy system by using evolutionary algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3364-3369.
    9. Kuang, Yonghong & Zhang, Yongjun & Zhou, Bin & Li, Canbing & Cao, Yijia & Li, Lijuan & Zeng, Long, 2016. "A review of renewable energy utilization in islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 504-513.
    10. Roslan, M.F. & Hannan, M.A. & Ker, Pin Jern & Uddin, M.N., 2019. "Microgrid control methods toward achieving sustainable energy management," Applied Energy, Elsevier, vol. 240(C), pages 583-607.
    11. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    12. Indre Siksnelyte & Edmundas Kazimieras Zavadskas & Dalia Streimikiene & Deepak Sharma, 2018. "An Overview of Multi-Criteria Decision-Making Methods in Dealing with Sustainable Energy Development Issues," Energies, MDPI, vol. 11(10), pages 1-21, October.
    13. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    14. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    15. Yan, Jie & Liu, Yongqian & Han, Shuang & Wang, Yimei & Feng, Shuanglei, 2015. "Reviews on uncertainty analysis of wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1322-1330.
    16. Blechinger, P. & Cader, C. & Bertheau, P. & Huyskens, H. & Seguin, R. & Breyer, C., 2016. "Global analysis of the techno-economic potential of renewable energy hybrid systems on small islands," Energy Policy, Elsevier, vol. 98(C), pages 674-687.
    17. Al Busaidi, Ahmed Said & Kazem, Hussein A & Al-Badi, Abdullah H & Farooq Khan, Mohammad, 2016. "A review of optimum sizing of hybrid PV–Wind renewable energy systems in oman," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 185-193.
    18. Monica, P. & Kowsalya, M., 2016. "Control strategies of parallel operated inverters in renewable energy application: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 885-901.
    19. Upadhyay, Subho & Sharma, M.P., 2014. "A review on configurations, control and sizing methodologies of hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 47-63.
    20. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    21. Yadav, Amit Kumar & Chandel, S.S., 2015. "Solar energy potential assessment of western Himalayan Indian state of Himachal Pradesh using J48 algorithm of WEKA in ANN based prediction model," Renewable Energy, Elsevier, vol. 75(C), pages 675-693.
    22. Aqsa Naeem & Naveed Ul Hassan & Chau Yuen & S. M. Muyeen, 2019. "Maximizing the Economic Benefits of a Grid-Tied Microgrid Using Solar-Wind Complementarity," Energies, MDPI, vol. 12(3), pages 1-22, January.
    23. Andishgar, Mohammad Hadi & Gholipour, Eskandar & Hooshmand, Rahmat-allah, 2017. "An overview of control approaches of inverter-based microgrids in islanding mode of operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1043-1060.
    24. Shivarama Krishna, K. & Sathish Kumar, K., 2015. "A review on hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 907-916.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bojan Banković & Filip Filipović & Nebojša Mitrović & Milutin Petronijević & Vojkan Kostić, 2020. "A Building Block Method for Modeling and Small-Signal Stability Analysis of the Autonomous Microgrid Operation," Energies, MDPI, vol. 13(6), pages 1-28, March.
    2. Izabela Sówka & Sławomir Pietrowicz & Piotr Kolasiński, 2021. "Energy Processes, Systems and Equipment," Energies, MDPI, vol. 14(6), pages 1-4, March.
    3. Sk. A. Shezan & Innocent Kamwa & Md. Fatin Ishraque & S. M. Muyeen & Kazi Nazmul Hasan & R. Saidur & Syed Muhammad Rizvi & Md Shafiullah & Fahad A. Al-Sulaiman, 2023. "Evaluation of Different Optimization Techniques and Control Strategies of Hybrid Microgrid: A Review," Energies, MDPI, vol. 16(4), pages 1-30, February.
    4. Bojun Kong & Jian Zhu & Shengbo Wang & Xingmin Xu & Xiaokuan Jin & Junjie Yin & Jianhua Wang, 2023. "Comparative Study of the Transmission Capacity of Grid-Forming Converters and Grid-Following Converters," Energies, MDPI, vol. 16(6), pages 1-13, March.
    5. Corsini, Alessandro & Delibra, Giovanni & Pizzuti, Isabella & Tajalli-Ardekani, Erfan, 2023. "Challenges of renewable energy communities on small Mediterranean islands: A case study on Ponza island," Renewable Energy, Elsevier, vol. 215(C).
    6. Quan-Quan Zhang & Rong-Jong Wai, 2021. "Robust Power Sharing and Voltage Stabilization Control Structure via Sliding-Mode Technique in Islanded Micro-Grid," Energies, MDPI, vol. 14(4), pages 1-27, February.
    7. Lucian Mihet-Popa & Sergio Saponara, 2021. "Power Converters, Electric Drives and Energy Storage Systems for Electrified Transportation and Smart Grid Applications," Energies, MDPI, vol. 14(14), pages 1-5, July.
    8. Yousef Asadi & Mohsen Eskandari & Milad Mansouri & Andrey V. Savkin & Erum Pathan, 2022. "Frequency and Voltage Control Techniques through Inverter-Interfaced Distributed Energy Resources in Microgrids: A Review," Energies, MDPI, vol. 15(22), pages 1-29, November.
    9. Matej Tkac & Martina Kajanova & Peter Bracinik, 2023. "A Review of Advanced Control Strategies of Microgrids with Charging Stations," Energies, MDPI, vol. 16(18), pages 1-25, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Yuqing & Bremner, Stephen & Menictas, Chris & Kay, Merlinde, 2018. "Battery energy storage system size determination in renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 109-125.
    2. Siddaiah, Rajanna & Saini, R.P., 2016. "A review on planning, configurations, modeling and optimization techniques of hybrid renewable energy systems for off grid applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 376-396.
    3. Come Zebra, Emília Inês & van der Windt, Henny J. & Nhumaio, Geraldo & Faaij, André P.C., 2021. "A review of hybrid renewable energy systems in mini-grids for off-grid electrification in developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    5. Thirunavukkarasu, M. & Sawle, Yashwant & Lala, Himadri, 2023. "A comprehensive review on optimization of hybrid renewable energy systems using various optimization techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    6. Nicu Bizon & Phatiphat Thounthong, 2020. "Energy Efficiency and Fuel Economy of a Fuel Cell/Renewable Energy Sources Hybrid Power System with the Load-Following Control of the Fueling Regulators," Mathematics, MDPI, vol. 8(2), pages 1-22, January.
    7. Zendehboudi, Sohrab & Rezaei, Nima & Lohi, Ali, 2018. "Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review," Applied Energy, Elsevier, vol. 228(C), pages 2539-2566.
    8. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    9. Scheubel, Christopher & Zipperle, Thomas & Tzscheutschler, Peter, 2017. "Modeling of industrial-scale hybrid renewable energy systems (HRES) – The profitability of decentralized supply for industry," Renewable Energy, Elsevier, vol. 108(C), pages 52-63.
    10. Fodhil, F. & Hamidat, A. & Nadjemi, O., 2019. "Potential, optimization and sensitivity analysis of photovoltaic-diesel-battery hybrid energy system for rural electrification in Algeria," Energy, Elsevier, vol. 169(C), pages 613-624.
    11. Khan, Mohammad Junaid & Yadav, Amit Kumar & Mathew, Lini, 2017. "Techno economic feasibility analysis of different combinations of PV-Wind-Diesel-Battery hybrid system for telecommunication applications in different cities of Punjab, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 577-607.
    12. Amara, Sihem & Toumi, Sana & Salah, Chokri Ben & Saidi, Abdelaziz Salah, 2021. "Improvement of techno-economic optimal sizing of a hybrid off-grid micro-grid system," Energy, Elsevier, vol. 233(C).
    13. Anoune, Kamal & Bouya, Mohsine & Astito, Abdelali & Abdellah, Abdellatif Ben, 2018. "Sizing methods and optimization techniques for PV-wind based hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 652-673.
    14. Mehrabankhomartash, Mahmoud & Rayati, Mohammad & Sheikhi, Aras & Ranjbar, Ali Mohammad, 2017. "Practical battery size optimization of a PV system by considering individual customer damage function," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 36-50.
    15. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    16. Rahmat Khezri & Amin Mahmoudi & Hirohisa Aki & S. M. Muyeen, 2021. "Optimal Planning of Remote Area Electricity Supply Systems: Comprehensive Review, Recent Developments and Future Scopes," Energies, MDPI, vol. 14(18), pages 1-29, September.
    17. Pablo Benalcazar & Adam Suski & Jacek Kamiński, 2020. "Optimal Sizing and Scheduling of Hybrid Energy Systems: The Cases of Morona Santiago and the Galapagos Islands," Energies, MDPI, vol. 13(15), pages 1-20, August.
    18. José Luis Torres-Madroñero & Joham Alvarez-Montoya & Daniel Restrepo-Montoya & Jorge Mario Tamayo-Avendaño & César Nieto-Londoño & Julián Sierra-Pérez, 2020. "Technological and Operational Aspects That Limit Small Wind Turbines Performance," Energies, MDPI, vol. 13(22), pages 1-39, November.
    19. Tezer, Tuba & Yaman, Ramazan & Yaman, Gülşen, 2017. "Evaluation of approaches used for optimization of stand-alone hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 840-853.
    20. Zahraee, S.M. & Khalaji Assadi, M. & Saidur, R., 2016. "Application of Artificial Intelligence Methods for Hybrid Energy System Optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 617-630.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:18:p:3582-:d:268783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.