IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i6p1418-d334039.html
   My bibliography  Save this article

The Effect of Groundwater Flow on the Thermal Performance of a Novel Borehole Heat Exchanger for Ground Source Heat Pump Systems: Small Scale Experiments and Numerical Simulation

Author

Listed:
  • Ahmed A. Serageldin

    (Environmental System Research Laboratory, Division of Human Environmental Systems, Hokkaido University, Sapporo 060-8628, Japan
    Mechanical Power Engineering Department, Faculty of Engineering at Shoubra, Benha University, Shoubra 11629, Egypt)

  • Ali Radwan

    (Environmental System Research Laboratory, Division of Human Environmental Systems, Hokkaido University, Sapporo 060-8628, Japan
    Mechanical Power Engineering Department, Faculty of Engineering, Mansoura University, El Mansoura 35516, Egypt)

  • Yoshitaka Sakata

    (Environmental System Research Laboratory, Division of Human Environmental Systems, Hokkaido University, Sapporo 060-8628, Japan)

  • Takao Katsura

    (Environmental System Research Laboratory, Division of Human Environmental Systems, Hokkaido University, Sapporo 060-8628, Japan)

  • Katsunori Nagano

    (Environmental System Research Laboratory, Division of Human Environmental Systems, Hokkaido University, Sapporo 060-8628, Japan)

Abstract

New small-scale experiments are carried out to study the effect of groundwater flow on the thermal performance of water ground heat exchangers for ground source heat pump systems. Four heat exchanger configurations are investigated; single U-tube with circular cross-section (SUC), single U-tube with an oval cross-section (SUO), single U-tube with circular cross-section and single spacer with circular cross-section (SUC + SSC) and single U-tube with an oval cross-section and single spacer with circular cross-section (SUO + SSC). The soil temperature distributions along the horizontal and vertical axis are measured and recorded simultaneously with measuring the electrical energy injected into the fluid, and the borehole wall temperature is measured as well; consequently, the borehole thermal resistance ( R b ) is calculated. Moreover, two dimensional and steady-state CFD simulations are validated against the experimental measurements at the groundwater velocity of 1000 m/year with an average error of 3%. Under saturated conditions without groundwater flow effect; using a spacer with SUC decreases the R b by 13% from 0.15 m·K/W to 0.13 m·K/W, also using a spacer with the SUO decreases the R b by 9% from 0.11 m·K/W to 0.1 m·K/W. In addition, the oval cross-section with spacer SUO + SSC decreases the R b by 33% compared with SUC. Under the effect of groundwater flow of 1000 m/year; R b of the SUC, SUO, SUC + SSC and SUO + SSC cases decrease by 15.5%, 12.3%, 6.1% and 4%, respectively, compared with the saturated condition.

Suggested Citation

  • Ahmed A. Serageldin & Ali Radwan & Yoshitaka Sakata & Takao Katsura & Katsunori Nagano, 2020. "The Effect of Groundwater Flow on the Thermal Performance of a Novel Borehole Heat Exchanger for Ground Source Heat Pump Systems: Small Scale Experiments and Numerical Simulation," Energies, MDPI, vol. 13(6), pages 1-26, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1418-:d:334039
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/6/1418/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/6/1418/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhu, Li & Chen, Sarula & Yang, Yang & Sun, Yong, 2019. "Transient heat transfer performance of a vertical double U-tube borehole heat exchanger under different operation conditions," Renewable Energy, Elsevier, vol. 131(C), pages 494-505.
    2. Self, Stuart J. & Reddy, Bale V. & Rosen, Marc A., 2013. "Geothermal heat pump systems: Status review and comparison with other heating options," Applied Energy, Elsevier, vol. 101(C), pages 341-348.
    3. Hu, Jinzhong, 2017. "An improved analytical model for vertical borehole ground heat exchanger with multiple-layer substrates and groundwater flow," Applied Energy, Elsevier, vol. 202(C), pages 537-549.
    4. Biglarian, Hassan & Abbaspour, Madjid & Saidi, Mohammad Hassan, 2017. "A numerical model for transient simulation of borehole heat exchangers," Renewable Energy, Elsevier, vol. 104(C), pages 224-237.
    5. Lee, C.K. & Lam, H.N., 2012. "A modified multi-ground-layer model for borehole ground heat exchangers with an inhomogeneous groundwater flow," Energy, Elsevier, vol. 47(1), pages 378-387.
    6. Choi, Wonjun & Ooka, Ryozo, 2016. "Effect of natural convection on thermal response test conducted in saturated porous formation: Comparison of gravel-backfilled and cement-grouted borehole heat exchangers," Renewable Energy, Elsevier, vol. 96(PA), pages 891-903.
    7. Eslami-nejad, Parham & Bernier, Michel, 2012. "Freezing of geothermal borehole surroundings: A numerical and experimental assessment with applications," Applied Energy, Elsevier, vol. 98(C), pages 333-345.
    8. Fan, Rui & Jiang, Yiqiang & Yao, Yang & Shiming, Deng & Ma, Zuiliang, 2007. "A study on the performance of a geothermal heat exchanger under coupled heat conduction and groundwater advection," Energy, Elsevier, vol. 32(11), pages 2199-2209.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paul Christodoulides & Ana Vieira & Stanislav Lenart & João Maranha & Gregor Vidmar & Rumen Popov & Aleksandar Georgiev & Lazaros Aresti & Georgios Florides, 2020. "Reviewing the Modeling Aspects and Practices of Shallow Geothermal Energy Systems," Energies, MDPI, vol. 13(16), pages 1-45, August.
    2. Hossein Javadi & Javier F. Urchueguia & Seyed Soheil Mousavi Ajarostaghi & Borja Badenes, 2020. "Numerical Study on the Thermal Performance of a Single U-Tube Borehole Heat Exchanger Using Nano-Enhanced Phase Change Materials," Energies, MDPI, vol. 13(19), pages 1-30, October.
    3. Joanna Piotrowska-Woroniak, 2021. "Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)," Energies, MDPI, vol. 14(16), pages 1-32, August.
    4. Radwan A. Almasri & Nidal H. Abu-Hamdeh & Abdullah Alajlan & Yazeed Alresheedi, 2022. "Utilizing a Domestic Water Tank to Make the Air Conditioning System in Residential Buildings More Sustainable in Hot Regions," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    5. Joanna Piotrowska-Woroniak, 2021. "Determination of the Selected Wells Operational Power with Borehole Heat Exchangers Operating in Real Conditions, Based on Experimental Tests," Energies, MDPI, vol. 14(9), pages 1-21, April.
    6. Aminhossein Jahanbin & Giovanni Semprini & Andrea Natale Impiombato & Cesare Biserni & Eugenia Rossi di Schio, 2020. "Effects of the Circuit Arrangement on the Thermal Performance of Double U-Tube Ground Heat Exchangers," Energies, MDPI, vol. 13(12), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    2. Zhao, Zilong & Lin, Yu-Feng & Stumpf, Andrew & Wang, Xinlei, 2022. "Assessing impacts of groundwater on geothermal heat exchangers: A review of methodology and modeling," Renewable Energy, Elsevier, vol. 190(C), pages 121-147.
    3. Jinli Xie & Yinghong Qin, 2021. "Heat Transfer and Bearing Characteristics of Energy Piles: Review," Energies, MDPI, vol. 14(20), pages 1-15, October.
    4. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    5. Aneta Sapińska-Sliwa & Marc A. Rosen & Andrzej Gonet & Joanna Kowalczyk & Tomasz Sliwa, 2019. "A New Method Based on Thermal Response Tests for Determining Effective Thermal Conductivity and Borehole Resistivity for Borehole Heat Exchangers," Energies, MDPI, vol. 12(6), pages 1-22, March.
    6. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    7. Tye-Gingras, Maxime & Gosselin, Louis, 2014. "Generic ground response functions for ground exchangers in the presence of groundwater flow," Renewable Energy, Elsevier, vol. 72(C), pages 354-366.
    8. Choi, Wonjun & Menberg, Kathrin & Kikumoto, Hideki & Heo, Yeonsook & Choudhary, Ruchi & Ooka, Ryozo, 2018. "Bayesian inference of structural error in inverse models of thermal response tests," Applied Energy, Elsevier, vol. 228(C), pages 1473-1485.
    9. Wenke Zhang & Hongxing Yang & Lin Lu & Zhaohong Fang, 2017. "Investigation on the heat transfer of energy piles with two-dimensional groundwater flow," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 12(1), pages 43-50.
    10. Daehoon Kim & Seokhoon Oh, 2018. "Optimizing the Design of a Vertical Ground Heat Exchanger: Measurement of the Thermal Properties of Bentonite-Based Grout and Numerical Analysis," Sustainability, MDPI, vol. 10(8), pages 1-15, July.
    11. Pan, Aiqiang & McCartney, John S. & Lu, Lin & You, Tian, 2020. "A novel analytical multilayer cylindrical heat source model for vertical ground heat exchangers installed in layered ground," Energy, Elsevier, vol. 200(C).
    12. Xiao-Hui Sun & Hongbin Yan & Mehrdad Massoudi & Zhi-Hua Chen & Wei-Tao Wu, 2018. "Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger," Energies, MDPI, vol. 11(4), pages 1-18, April.
    13. Zhang, Xueping & Han, Zongwei & Ji, Qiang & Zhang, Hongzhi & Li, Xiuming, 2021. "Thermal response tests for the identification of soil thermal parameters: A review," Renewable Energy, Elsevier, vol. 173(C), pages 1123-1135.
    14. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    15. Chen, Juanwen & Li, Zhibin & Huang, Wenbo & Ma, Qingshan & Li, Ang & Wang, Bin & Sun, Hongtao & Jiang, Fangming, 2024. "Super-long gravity heat pipe geothermal space heating system: A practical case in Taiyuan, China," Energy, Elsevier, vol. 299(C).
    16. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    17. Jin, Guang & Li, Zheng & Guo, Shaopeng & Wu, Xuan & Wu, Wenfei & Zhang, Kai, 2020. "Thermal performance analysis of multiple borehole heat exchangers in multilayer geotechnical media," Energy, Elsevier, vol. 209(C).
    18. Ma, Z.D. & Jia, G.S. & Cui, X. & Xia, Z.H. & Zhang, Y.P. & Jin, L.W., 2020. "Analysis on variations of ground temperature field and thermal radius caused by ground heat exchanger crossing an aquifer layer," Applied Energy, Elsevier, vol. 276(C).
    19. Zhou, Zhihua & Wu, Shengwei & Du, Tao & Chen, Guanyi & Zhang, Zhiming & Zuo, Jian & He, Qing, 2016. "The energy-saving effects of ground-coupled heat pump system integrated with borehole free cooling: A study in China," Applied Energy, Elsevier, vol. 182(C), pages 9-19.
    20. Sihan Zhou & Lijie Zhu & Runan Wan & Tao Zhang & Yongzheng Zhang & Yi Zhan & Fang Wang & Linfeng Zhang & Tian You, 2023. "An Overview of Sandbox Experiment on Ground Heat Exchangers," Sustainability, MDPI, vol. 15(14), pages 1-39, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:6:p:1418-:d:334039. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.