IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1229-d329493.html
   My bibliography  Save this article

Experiments on Heat Transfer of Supercritical Pressure Kerosene in Mini Tube under Ultra-High Heat Fluxes

Author

Listed:
  • Jianguo Yan

    (State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Shouchun Liu

    (State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Pengcheng Guo

    (State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China)

  • Qincheng Bi

    (State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

Heat transfer of supercritical-pressure kerosene is crucial for regenerative cooling systems in rocket engines. In this study, experiments were devoted to measure the heat transfer of supercritical-pressure kerosene under ultra-high heat fluxes. The kerosene flowed horizontally in a mini circular tube with a 1.0 mm inner diameter and was heated uniformly under pressures of 10–25 MPa, mass fluxes of 8600–51,600 kg/m 2 s, and a maximum heat flux of up to 33.6 MW/m 2 . The effects of the operating parameters on the heat transfer of supercritical-pressure kerosene were discussed. It was observed that the heat transfer coefficient of kerosene increases at a higher mass flux and inlet bulk temperature, but is little affected by pressure. The heat transfer of supercritical-pressure kerosene is classified into two regions: normal heat transfer and enhanced heat transfer. When the wall temperature exceeds a certain value, heat transfer is enhanced, which could be attributed to pseudo boiling. This phenomenon is more likely to occur under higher heat flux and lower mass flux conditions. In addition, the experimental data were compared with several existing heat transfer correlations, in which one of these correlations can relatively well predict the heat transfer of supercritical-pressure kerosene. The results drawn from this study could be beneficial to the regenerative cooling technology for rocket engines.

Suggested Citation

  • Jianguo Yan & Shouchun Liu & Pengcheng Guo & Qincheng Bi, 2020. "Experiments on Heat Transfer of Supercritical Pressure Kerosene in Mini Tube under Ultra-High Heat Fluxes," Energies, MDPI, vol. 13(5), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1229-:d:329493
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1229/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1229/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Du, Xin & Lv, Zhihao & Yu, Xiao & Cao, Maoguo & Zhou, Jianjun & Ren, Yongxiang & Qiu, Qinggang & Zhu, Xiaojing, 2020. "Heat transfer of supercritical CO2 in vertical round tube: A considerate turbulent Prandtl number modification," Energy, Elsevier, vol. 192(C).
    2. Yıldız Koç & Hüseyin Yağlı & Ali Koç, 2019. "Exergy Analysis and Performance Improvement of a Subcritical/Supercritical Organic Rankine Cycle (ORC) for Exhaust Gas Waste Heat Recovery in a Biogas Fuelled Combined Heat and Power (CHP) Engine Thro," Energies, MDPI, vol. 12(4), pages 1-22, February.
    3. Yanhong Wang & Sufen Li & Ming Dong, 2014. "Numerical Study on Heat Transfer Deterioration of Supercritical n-Decane in Horizontal Circular Tubes," Energies, MDPI, vol. 7(11), pages 1-20, November.
    4. Huang, Dan & Wu, Zan & Sunden, Bengt & Li, Wei, 2016. "A brief review on convection heat transfer of fluids at supercritical pressures in tubes and the recent progress," Applied Energy, Elsevier, vol. 162(C), pages 494-505.
    5. Marija Lazova & Henk Huisseune & Alihan Kaya & Steven Lecompte & George Kosmadakis & Michel De Paepe, 2016. "Performance Evaluation of a Helical Coil Heat Exchanger Working under Supercritical Conditions in a Solar Organic Rankine Cycle Installation," Energies, MDPI, vol. 9(6), pages 1-20, June.
    6. Ehsan, M. Monjurul & Guan, Zhiqiang & Klimenko, A.Y., 2018. "A comprehensive review on heat transfer and pressure drop characteristics and correlations with supercritical CO2 under heating and cooling applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 658-675.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Yong & Yi, Zhengming, 2023. "Effect of flow direction on heat transfer characteristics of supercritical CO2 in a heating serpentine micro-tube," Energy, Elsevier, vol. 262(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Xinying & Guo, Jiangfeng & Huai, Xiulan & Zhang, Haiyan & Cheng, Keyong & Zhou, Jingzhi, 2019. "Numerical investigations on serpentine channel for supercritical CO2 recuperator," Energy, Elsevier, vol. 172(C), pages 517-530.
    2. Yao, Yecheng & Zhu, Qi’an & Li, Zhouhang, 2020. "Performance of helically coiled gas heaters in supercritical CO2 Rankine cycles: A detailed assessment under convective boundary condition," Energy, Elsevier, vol. 195(C).
    3. Jianfei Tong & Lingbo Zhu & Yiping Lu & Tianjiao Liang & Youlian Lu & Songlin Wang & Chaoju Yu & Shikui Dong & Heping Tan, 2021. "Heat Transfer Analysis in Supercritical Hydrogen of Decoupled Poisoned Hydrogen Moderator with Non-Uniform Heat Source of Chinese Spallation Neutron Source," Energies, MDPI, vol. 14(15), pages 1-17, July.
    4. Zhang, Shijie & Xu, Xiaoxiao & Liu, Chao & Dang, Chaobin, 2020. "A review on application and heat transfer enhancement of supercritical CO2 in low-grade heat conversion," Applied Energy, Elsevier, vol. 269(C).
    5. Kravanja, Gregor & Zajc, Gašper & Knez, Željko & Škerget, Mojca & Marčič, Simon & Knez, Maša H., 2018. "Heat transfer performance of CO2, ethane and their azeotropic mixture under supercritical conditions," Energy, Elsevier, vol. 152(C), pages 190-201.
    6. Guo, Jiangfeng & Xiang, Mengru & Zhang, Haiyan & Huai, Xiulan & Cheng, Keyong & Cui, Xinying, 2019. "Thermal-hydraulic characteristics of supercritical pressure CO2 in vertical tubes under cooling and heating conditions," Energy, Elsevier, vol. 170(C), pages 1067-1081.
    7. Sung-rok Hwang & Hyung Ju Lee, 2023. "Comparison and Evaluation of Transport Property Prediction Performance of Supercritical Hydrocarbon Aviation Fuels and Their Pyrolyzed Products via Endothermic Reactions," Energies, MDPI, vol. 16(13), pages 1-15, July.
    8. Xu, Qing & Li, Haowei & Feng, Yaoxun & Li, Xiaoning & Ling, Changming & Zhou, Chaoying & Qin, Jiang, 2020. "Dynamic thermo-physical characteristics of high temperature gaseous hydrocarbon fuel thermal power generation for regeneratively cooled hypersonic propulsion system," Energy, Elsevier, vol. 211(C).
    9. Zhongchao Zhao & Yimeng Zhou & Xiaolong Ma & Xudong Chen & Shilin Li & Shan Yang, 2019. "Numerical Study on Thermal Hydraulic Performance of Supercritical LNG in Zigzag-Type Channel PCHEs," Energies, MDPI, vol. 12(3), pages 1-19, February.
    10. Yıldız Koç, 2019. "Parametric Optimisation of an ORC in a Wood Chipboard Production Facility to Recover Waste Heat Produced from the Drying and Steam Production Process," Energies, MDPI, vol. 12(19), pages 1-22, September.
    11. Yang, D.L. & Tang, G.H. & Fan, Y.H. & Li, X.L. & Wang, S.Q., 2020. "Arrangement and three-dimensional analysis of cooling wall in 1000 MW S–CO2 coal-fired boiler," Energy, Elsevier, vol. 197(C).
    12. Ge, Xueli & Zhang, Zhongxiao & Fan, Haojie & Zhang, Jian & Bi, Degui, 2019. "Unsteady-state heat transfer characteristics of spiral water wall tube in advanced-ultra-supercritical boilers from experiments and distributed parameter model," Energy, Elsevier, vol. 189(C).
    13. Qiaoling Zhang & Kangming Wang & Ziyuan Yu & Haoran Ma & Biyun Huang, 2024. "Convection Heat-Transfer Characteristics of Supercritical Pressure RP-3 in Horizontal Microchannels," Energies, MDPI, vol. 17(13), pages 1-20, July.
    14. José Luis de Andrés Honrubia & José Gaviria de la Puerta & Fernando Cortés & Urko Aguirre-Larracoechea & Aitor Goti & Jone Retolaza, 2021. "Development and Application of a Multi-Objective Tool for Thermal Design of Heat Exchangers Using Neural Networks," Mathematics, MDPI, vol. 9(10), pages 1-23, May.
    15. Cheng, Liangyuan & Xu, Jinliang & Cao, Wenxuan & Zhou, Kaiping & Liu, Guanglin, 2024. "Supercritical carbon dioxide heat transfer in horizontal tube based on the Froude number analysis," Energy, Elsevier, vol. 294(C).
    16. Shi, Shaofei & Wang, Yufei & Wang, Youlei & Feng, Xiao, 2022. "A new optimization method for cooling systems considering low-temperature waste heat utilization in a polysilicon industry," Energy, Elsevier, vol. 238(PA).
    17. Dongpeng Jia & Ning Wang & Yu Pan & Chaoyang Liu & Shiwei Wang & Kai Yang & Jian Liu, 2021. "Flow and Heat Transfer Characteristics of Supercritical N-Decane in Adjacent Cooling Channels with Opposite Flow Directions," Energies, MDPI, vol. 14(4), pages 1-19, February.
    18. Wang, Lingbao & Bu, Xianbiao & Li, Huashan, 2020. "Multi-objective optimization and off-design evaluation of organic rankine cycle (ORC) for low-grade waste heat recovery," Energy, Elsevier, vol. 203(C).
    19. Youcef Redjeb & Khatima Kaabeche-Djerafi & Anna Stoppato & Alberto Benato, 2021. "The IRC-PD Tool: A Code to Design Steam and Organic Waste Heat Recovery Units," Energies, MDPI, vol. 14(18), pages 1-37, September.
    20. Dingchen Wu & Mingshan Wei & Ran Tian & Siyu Zheng & Jundi He, 2022. "A Review of Flow and Heat Transfer Characteristics of Supercritical Carbon Dioxide under Cooling Conditions in Energy and Power Systems," Energies, MDPI, vol. 15(23), pages 1-28, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1229-:d:329493. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.