IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1200-d328799.html
   My bibliography  Save this article

Novel Simulation Algorithm for Modeling the Hysteresis of Phase Change Materials

Author

Listed:
  • Anna Zastawna-Rumin

    (Faculty of Civil Engineering, Cracow University of Technology, 31-155 Krakow, Poland)

  • Tomasz Kisilewicz

    (Faculty of Civil Engineering, Cracow University of Technology, 31-155 Krakow, Poland)

  • Umberto Berardi

    (Department of Architectural Science, Ryerson University, 350 Victoria st., Toronto, ON M5B 2K3, Canada)

Abstract

Latent heat thermal energy storage (LHTES) using phase change materials (PCM) is one of the most promising ways for thermal energy storage (TES), especially in lightweight buildings. However, accurate control of the phase transition of PCM is not easy to predict. For example, neglecting the hysteresis or the effect of the speed of phase change processes reduces the accuracy of simulations of TES. In this paper, the authors propose a new software module for EnergyPlus™ that aims to simulate the hysteresis of PCMs during the phase change. The new module is tested by comparing simulation results with experimental tests done in a climatic chamber. A strong consistency between experimental and simulation results was obtained, while a discrepancy error of less than 1% was obtained. Moreover, in real conditions, as a result of quick temperature changes, only a partial phase transformation of the material is often observed. The new model also allows the consideration of the case with partial phase changes of the PCM. Finally, the simulation algorithm presented in this article aims to represent a better way to model LHTES with PCM.

Suggested Citation

  • Anna Zastawna-Rumin & Tomasz Kisilewicz & Umberto Berardi, 2020. "Novel Simulation Algorithm for Modeling the Hysteresis of Phase Change Materials," Energies, MDPI, vol. 13(5), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1200-:d:328799
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1200/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1200/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mandilaras, I.D. & Kontogeorgos, D.A. & Founti, M.A., 2015. "A hybrid methodology for the determination of the effective heat capacity of PCM enhanced building components," Renewable Energy, Elsevier, vol. 76(C), pages 790-804.
    2. Kumarasamy, Karthikeyan & An, Jinliang & Yang, Jinglei & Yang, En-Hua, 2017. "Novel CFD-based numerical schemes for conduction dominant encapsulated phase change materials (EPCM) with temperature hysteresis for thermal energy storage applications," Energy, Elsevier, vol. 132(C), pages 31-40.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rohit Jogineedi & Kaushik Biswas & Som Shrestha, 2021. "Experimental Study of the Behavior of Phase Change Materials during Interrupted Phase Change Processes," Energies, MDPI, vol. 14(23), pages 1-13, December.
    2. Stella Tsoka & Theodoros Theodosiou & Konstantia Papadopoulou & Katerina Tsikaloudaki, 2020. "Assessing the Energy Performance of Prefabricated Buildings Considering Different Wall Configurations and the Use of PCMs in Greece," Energies, MDPI, vol. 13(19), pages 1-20, September.
    3. Túlio Nascimento Porto & João M. P. Q. Delgado & Ana Sofia Guimarães & Hortência Luma Fernandes Magalhães & Gicelia Moreira & Balbina Brito Correia & Tony Freire de Andrade & Antonio Gilson Barbosa de, 2020. "Phase Change Material Melting Process in a Thermal Energy Storage System for Applications in Buildings," Energies, MDPI, vol. 13(12), pages 1-32, June.
    4. Agnieszka Ochman & Wei-Qin Chen & Przemysław Błasiak & Michał Pomorski & Sławomir Pietrowicz, 2021. "The Use of Capsuled Paraffin Wax in Low-Temperature Thermal Energy Storage Applications: An Experimental and Numerical Investigation," Energies, MDPI, vol. 14(3), pages 1-27, January.
    5. Dileep Kumar & Morshed Alam & Jay G. Sanjayan, 2021. "Retrofitting Building Envelope Using Phase Change Materials and Aerogel Render for Adaptation to Extreme Heatwave: A Multi-Objective Analysis Considering Heat Stress, Energy, Environment, and Cost," Sustainability, MDPI, vol. 13(19), pages 1-29, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dre Helmns & David H. Blum & Spencer M. Dutton & Van P. Carey, 2021. "Development and Validation of a Latent Thermal Energy Storage Model Using Modelica," Energies, MDPI, vol. 14(1), pages 1-22, January.
    2. Xiong, Teng & Shah, Kwok Wei & Kua, Harn Wei, 2021. "Thermal performance enhancement of cementitious composite containing polystyrene/n-octadecane microcapsules: An experimental and numerical study," Renewable Energy, Elsevier, vol. 169(C), pages 335-357.
    3. Geng, Xiaoye & Li, Wei & Yin, Qing & Wang, Yu & Han, Na & Wang, Ning & Bian, Junmin & Wang, Jianping & Zhang, Xingxiang, 2018. "Design and fabrication of reversible thermochromic microencapsulated phase change materials for thermal energy storage and its antibacterial activity," Energy, Elsevier, vol. 159(C), pages 857-869.
    4. Matthias Singer & Michael Fischlschweiger & Tim Zeiner, 2023. "Investigation of the Heat Storage Capacity and Storage Dynamics of a Novel Polymeric Macro-Encapsulated Core-Shell Particle Using a Paraffinic Core," Energies, MDPI, vol. 16(2), pages 1-14, January.
    5. Allouche, Yosr & Varga, Szabolcs & Bouden, Chiheb & Oliveira, Armando C., 2016. "Validation of a CFD model for the simulation of heat transfer in a tubes-in-tank PCM storage unit," Renewable Energy, Elsevier, vol. 89(C), pages 371-379.
    6. Klimeš, Lubomír & Charvát, Pavel & Mastani Joybari, Mahmood & Zálešák, Martin & Haghighat, Fariborz & Panchabikesan, Karthik & El Mankibi, Mohamed & Yuan, Yanping, 2020. "Computer modelling and experimental investigation of phase change hysteresis of PCMs: The state-of-the-art review," Applied Energy, Elsevier, vol. 263(C).
    7. Tilman Barz & Johannes Krämer & Johann Emhofer, 2020. "Identification of Phase Fraction–Temperature Curves from Heat Capacity Data for Numerical Modeling of Heat Transfer in Commercial Paraffin Waxes," Energies, MDPI, vol. 13(19), pages 1-20, October.
    8. Erik Schmerse & Charles A. Ikutegbe & Amar Auckaili & Mohammed M. Farid, 2020. "Using PCM in Two Proposed Residential Buildings in Christchurch, New Zealand," Energies, MDPI, vol. 13(22), pages 1-25, November.
    9. Liu, Yan & Wang, Mengyuan & Cui, Hongzhi & Yang, Liu & Liu, Jiaping, 2020. "Micro-/macro-level optimization of phase change material panel in building envelope," Energy, Elsevier, vol. 195(C).
    10. Zhou, Yuekuan & Zheng, Siqian & Liu, Zhengxuan & Wen, Tao & Ding, Zhixiong & Yan, Jun & Zhang, Guoqiang, 2020. "Passive and active phase change materials integrated building energy systems with advanced machine-learning based climate-adaptive designs, intelligent operations, uncertainty-based analysis and optim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    11. Wang, Zhihua & Wang, Fenghao & Ma, Zhenjun & Lin, Wenye & Ren, Haoshan, 2019. "Investigation on the feasibility and performance of transcritical CO2 heat pump integrated with thermal energy storage for space heating," Renewable Energy, Elsevier, vol. 134(C), pages 496-508.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1200-:d:328799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.