IDEAS home Printed from https://ideas.repec.org/a/eee/intfin/v85y2023ics1042443123000367.html
   My bibliography  Save this article

How does the Russian-Ukrainian war change connectedness and hedging opportunities? Comparison between dirty and clean energy markets versus global stock indices

Author

Listed:
  • Karkowska, Renata
  • Urjasz, Szczepan

Abstract

The unexpected Russian invasion of Ukraine created greater uncertainty about unrestricted access to fossil commodities. Therefore, in response to the growing challenges of energy security and climate change, renewable energy could open up new energy sources and investment opportunities for market participants. The main goal of this research is to investigate the volatility spillovers of dirty and clean energy markets versus global stock indices, in situations of rising geopolitical risk. To reveal crucial changes in shock transmission during the period from August 1, 2014 to May 27, 2022, we used volatility connectedness indices based on the novel methodology proposed by Diebold and Yilmaz (2012, 2014, 2015), as well as structural breaks. Furthermore, our study investigates the advantages and disadvantages of heterogeneous diversification in green energy for hedging strategies. Optimal weights and hedge ratios are calculated for portfolio diversification and risk management. We find that clean energy indices generally show lower risk than global equity markets; however, the cost of hedging in renewable energy assets is higher compared to non-renewable energy indices.

Suggested Citation

  • Karkowska, Renata & Urjasz, Szczepan, 2023. "How does the Russian-Ukrainian war change connectedness and hedging opportunities? Comparison between dirty and clean energy markets versus global stock indices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 85(C).
  • Handle: RePEc:eee:intfin:v:85:y:2023:i:c:s1042443123000367
    DOI: 10.1016/j.intfin.2023.101768
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1042443123000367
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.intfin.2023.101768?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hanif, Waqas & Arreola Hernandez, Jose & Mensi, Walid & Kang, Sang Hoon & Uddin, Gazi Salah & Yoon, Seong-Min, 2021. "Nonlinear dependence and connectedness between clean/renewable energy sector equity and European emission allowance prices," Energy Economics, Elsevier, vol. 101(C).
    2. Ding, Qian & Huang, Jianbai & Zhang, Hongwei, 2022. "Time-frequency spillovers among carbon, fossil energy and clean energy markets: The effects of attention to climate change," International Review of Financial Analysis, Elsevier, vol. 83(C).
    3. Bouri, Elie & Cepni, Oguzhan & Gabauer, David & Gupta, Rangan, 2021. "Return connectedness across asset classes around the COVID-19 outbreak," International Review of Financial Analysis, Elsevier, vol. 73(C).
    4. Cunado, J. & Perez de Gracia, F., 2005. "Oil prices, economic activity and inflation: evidence for some Asian countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 45(1), pages 65-83, February.
    5. Antonakakis, Nikolaos & Cunado, Juncal & Filis, George & Gabauer, David & Perez de Gracia, Fernando, 2018. "Oil volatility, oil and gas firms and portfolio diversification," Energy Economics, Elsevier, vol. 70(C), pages 499-515.
    6. He, Zhifang, 2020. "Dynamic impacts of crude oil price on Chinese investor sentiment: Nonlinear causality and time-varying effect," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 131-153.
    7. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    8. Tiwari, Aviral Kumar & Aikins Abakah, Emmanuel Joel & Gabauer, David & Dwumfour, Richard Adjei, 2022. "Dynamic spillover effects among green bond, renewable energy stocks and carbon markets during COVID-19 pandemic: Implications for hedging and investments strategies," Global Finance Journal, Elsevier, vol. 51(C).
    9. Elgammal, Mohammed M. & Ahmed, Walid M.A. & Alshami, Abdullah, 2021. "Price and volatility spillovers between global equity, gold, and energy markets prior to and during the COVID-19 pandemic," Resources Policy, Elsevier, vol. 74(C).
    10. Cheima Gharib & Salma Mefteh-Wali & Vanessa Serret & Sami Ben Jabeur, 2021. "Impact of COVID-19 pandemic on crude oil prices: Evidence from Econophysics approach," Post-Print hal-03375164, HAL.
    11. Alsalman, Zeina, 2016. "Oil price uncertainty and the U.S. stock market analysis based on a GARCH-in-mean VAR model," Energy Economics, Elsevier, vol. 59(C), pages 251-260.
    12. Elie, Bouri & Naji, Jalkh & Dutta, Anupam & Uddin, Gazi Salah, 2019. "Gold and crude oil as safe-haven assets for clean energy stock indices: Blended copulas approach," Energy, Elsevier, vol. 178(C), pages 544-553.
    13. Tareq Saeed & Elie Bouri & Dang Khoa Tran, 2020. "Hedging Strategies of Green Assets against Dirty Energy Assets," Energies, MDPI, vol. 13(12), pages 1-17, June.
    14. Reboredo, Juan C. & Rivera-Castro, Miguel A. & Ugolini, Andrea, 2017. "Wavelet-based test of co-movement and causality between oil and renewable energy stock prices," Energy Economics, Elsevier, vol. 61(C), pages 241-252.
    15. Johnson A. Oliyide & Oluwasegun B. Adekoya & Muhammad A. Khan, 2021. "Economic policy uncertainty and the volatility connectedness between oil shocks and metal market: An extension," International Economics, CEPII research center, issue 167, pages 136-150.
    16. Adekoya, Oluwasegun B. & Asl, Mahdi Ghaemi & Oliyide, Johnson A. & Izadi, Parviz, 2023. "Multifractality and cross-correlation between the crude oil and the European and non-European stock markets during the Russia-Ukraine war," Resources Policy, Elsevier, vol. 80(C).
    17. Mensi, Walid & Rehman, Mobeen Ur & Hammoudeh, Shawkat & Vo, Xuan Vinh & Kim, Won Joong, 2023. "How macroeconomic factors drive the linkages between inflation and oil markets in global economies? A multiscale analysis," International Economics, Elsevier, vol. 173(C), pages 212-232.
    18. Adekoya, Oluwasegun B. & Oliyide, Johnson A. & Yaya, OlaOluwa S. & Al-Faryan, Mamdouh Abdulaziz Saleh, 2022. "Does oil connect differently with prominent assets during war? Analysis of intra-day data during the Russia-Ukraine saga," Resources Policy, Elsevier, vol. 77(C).
    19. Diebold, Francis X. & Yilmaz, Kamil, 2015. "Financial and Macroeconomic Connectedness: A Network Approach to Measurement and Monitoring," OUP Catalogue, Oxford University Press, number 9780199338306.
    20. Lo, Gaye-Del & Marcelin, Isaac & Bassène, Théophile & Sène, Babacar, 2022. "The Russo-Ukrainian war and financial markets: the role of dependence on Russian commodities," Finance Research Letters, Elsevier, vol. 50(C).
    21. Narayan, S. & Sriananthakumar, S. & Islam, S.Z., 2014. "Stock market integration of emerging Asian economies: Patterns and causes," Economic Modelling, Elsevier, vol. 39(C), pages 19-31.
    22. Si, Deng-Kui & Li, Xiao-Lin & Xu, XuChuan & Fang, Yi, 2021. "The risk spillover effect of the COVID-19 pandemic on energy sector: Evidence from China," Energy Economics, Elsevier, vol. 102(C).
    23. Lorenzo Cappiello & Robert F. Engle & Kevin Sheppard, 2006. "Asymmetric Dynamics in the Correlations of Global Equity and Bond Returns," Journal of Financial Econometrics, Oxford University Press, vol. 4(4), pages 537-572.
    24. Fahmy, Hany, 2022. "The rise in investors’ awareness of climate risks after the Paris Agreement and the clean energy-oil-technology prices nexus," Energy Economics, Elsevier, vol. 106(C).
    25. Reboredo, Juan C., 2015. "Is there dependence and systemic risk between oil and renewable energy stock prices?," Energy Economics, Elsevier, vol. 48(C), pages 32-45.
    26. Xie, Qiwei & Liu, Ranran & Qian, Tao & Li, Jingyu, 2021. "Linkages between the international crude oil market and the Chinese stock market: A BEKK-GARCH-AFD approach," Energy Economics, Elsevier, vol. 102(C).
    27. Managi, Shunsuke & Okimoto, Tatsuyoshi, 2013. "Does the price of oil interact with clean energy prices in the stock market?," Japan and the World Economy, Elsevier, vol. 27(C), pages 1-9.
    28. Lutz Kilian & Cheolbeom Park, 2009. "The Impact Of Oil Price Shocks On The U.S. Stock Market," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(4), pages 1267-1287, November.
    29. Lundgren, Amanda Ivarsson & Milicevic, Adriana & Uddin, Gazi Salah & Kang, Sang Hoon, 2018. "Connectedness network and dependence structure mechanism in green investments," Energy Economics, Elsevier, vol. 72(C), pages 145-153.
    30. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    31. Naeem, Muhammad Abubakr & Peng, Zhe & Suleman, Mouhammed Tahir & Nepal, Rabindra & Shahzad, Syed Jawad Hussain, 2020. "Time and frequency connectedness among oil shocks, electricity and clean energy markets," Energy Economics, Elsevier, vol. 91(C).
    32. Kroner, Kenneth F. & Sultan, Jahangir, 1993. "Time-Varying Distributions and Dynamic Hedging with Foreign Currency Futures," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 28(4), pages 535-551, December.
    33. Huang, Shupei & An, Haizhong & Huang, Xuan & Jia, Xiaoliang, 2018. "Co-movement of coherence between oil prices and the stock market from the joint time-frequency perspective," Applied Energy, Elsevier, vol. 221(C), pages 122-130.
    34. Adekoya, Oluwasegun B. & Oliyide, Johnson A., 2021. "How COVID-19 drives connectedness among commodity and financial markets: Evidence from TVP-VAR and causality-in-quantiles techniques," Resources Policy, Elsevier, vol. 70(C).
    35. Jiang, Zhuhua & Yoon, Seong-Min, 2020. "Dynamic co-movement between oil and stock markets in oil-importing and oil-exporting countries: Two types of wavelet analysis," Energy Economics, Elsevier, vol. 90(C).
    36. Papathanasiou, Spyros & Vasiliou, Dimitrios & Magoutas, Anastasios & Koutsokostas, Drosos, 2022. "Do hedge and merger arbitrage funds actually hedge? A time-varying volatility spillover approach," Finance Research Letters, Elsevier, vol. 44(C).
    37. Zhifeng Liu & Toan Luu Duc Huynh & Peng-Fei Dai, 2020. "The impact of COVID-19 on the stock market crash risk in China," Papers 2009.08030, arXiv.org, revised Aug 2021.
    38. Maghyereh, Aktham I. & Awartani, Basel & Abdoh, Hussein, 2019. "The co-movement between oil and clean energy stocks: A wavelet-based analysis of horizon associations," Energy, Elsevier, vol. 169(C), pages 895-913.
    39. Junttila, Juha & Pesonen, Juho & Raatikainen, Juhani, 2018. "Commodity market based hedging against stock market risk in times of financial crisis: The case of crude oil and gold," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 56(C), pages 255-280.
    40. Diebold, Francis X. & Yilmaz, Kamil, 2012. "Better to give than to receive: Predictive directional measurement of volatility spillovers," International Journal of Forecasting, Elsevier, vol. 28(1), pages 57-66.
    41. Kroner, Kenneth F & Ng, Victor K, 1998. "Modeling Asymmetric Comovements of Asset Returns," The Review of Financial Studies, Society for Financial Studies, vol. 11(4), pages 817-844.
    42. Wen, Fenghua & Zhao, Lili & He, Shaoyi & Yang, Guozheng, 2020. "Asymmetric relationship between carbon emission trading market and stock market: Evidences from China," Energy Economics, Elsevier, vol. 91(C).
    43. Pesaran, H. Hashem & Shin, Yongcheol, 1998. "Generalized impulse response analysis in linear multivariate models," Economics Letters, Elsevier, vol. 58(1), pages 17-29, January.
    44. Ahmad, Wasim, 2017. "On the dynamic dependence and investment performance of crude oil and clean energy stocks," Research in International Business and Finance, Elsevier, vol. 42(C), pages 376-389.
    45. Sek, Siok Kun, 2017. "Impact of oil price changes on domestic price inflation at disaggregated levels: Evidence from linear and nonlinear ARDL modeling," Energy, Elsevier, vol. 130(C), pages 204-217.
    46. Zhang, Zhikai & Wang, Yudong & Xiao, Jihong & Zhang, Yaojie, 2023. "Not all geopolitical shocks are alike: Identifying price dynamics in the crude oil market under tensions," Resources Policy, Elsevier, vol. 80(C).
    47. Broadstock, David C. & Cao, Hong & Zhang, Dayong, 2012. "Oil shocks and their impact on energy related stocks in China," Energy Economics, Elsevier, vol. 34(6), pages 1888-1895.
    48. Isaac Appiah-Otoo, 2021. "Impact of Economic Policy Uncertainty on Renewable Energy Growth," Energy RESEARCH LETTERS, Asia-Pacific Applied Economics Association, vol. 2(1), pages 1-5.
    49. Adekoya, Oluwasegun B. & Oliyide, Johnson A. & Asl, Mahdi Ghaemi & Jalalifar, Saba, 2021. "Financing the green projects: Market efficiency and volatility persistence of green versus conventional bonds, and the comparative effects of health and financial crises," International Review of Financial Analysis, Elsevier, vol. 78(C).
    50. Mensi, Walid & Boubaker, Ferihane Zaraa & Al-Yahyaee, Khamis Hamed & Kang, Sang Hoon, 2018. "Dynamic volatility spillovers and connectedness between global, regional, and GIPSI stock markets," Finance Research Letters, Elsevier, vol. 25(C), pages 230-238.
    51. Ahmad, Wasim & Sadorsky, Perry & Sharma, Amit, 2018. "Optimal hedge ratios for clean energy equities," Economic Modelling, Elsevier, vol. 72(C), pages 278-295.
    52. Guhathakurta, Kousik & Dash, Saumya Ranjan & Maitra, Debasish, 2020. "Period specific volatility spillover based connectedness between oil and other commodity prices and their portfolio implications," Energy Economics, Elsevier, vol. 85(C).
    53. Kuang, Wei, 2021. "Which clean energy sectors are attractive? A portfolio diversification perspective," Energy Economics, Elsevier, vol. 104(C).
    54. Alqahtani, Abdullah & Selmi, Refk & Hongbing, Ouyang, 2021. "The financial impacts of jump processes in the crude oil price: Evidence from G20 countries in the pre- and post-COVID-19," Resources Policy, Elsevier, vol. 72(C).
    55. Umar, Zaghum & Adekoya, Oluwasegun Babatunde & Oliyide, Johnson Ayobami & Gubareva, Mariya, 2021. "Media sentiment and short stocks performance during a systemic crisis," International Review of Financial Analysis, Elsevier, vol. 78(C).
    56. Lutz Kilian & Daniel P. Murphy, 2014. "The Role Of Inventories And Speculative Trading In The Global Market For Crude Oil," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(3), pages 454-478, April.
    57. Kumar, Surender & Managi, Shunsuke & Matsuda, Akimi, 2012. "Stock prices of clean energy firms, oil and carbon markets: A vector autoregressive analysis," Energy Economics, Elsevier, vol. 34(1), pages 215-226.
    58. Bondia, Ripsy & Ghosh, Sajal & Kanjilal, Kakali, 2016. "International crude oil prices and the stock prices of clean energy and technology companies: Evidence from non-linear cointegration tests with unknown structural breaks," Energy, Elsevier, vol. 101(C), pages 558-565.
    59. Gharib, Cheima & Mefteh-Wali, Salma & Serret, Vanessa & Ben Jabeur, Sami, 2021. "Impact of COVID-19 pandemic on crude oil prices: Evidence from Econophysics approach," Resources Policy, Elsevier, vol. 74(C).
    60. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    61. Gong, Xu & Xu, Jun, 2022. "Geopolitical risk and dynamic connectedness between commodity markets," Energy Economics, Elsevier, vol. 110(C).
    62. Nandha, Mohan & Faff, Robert, 2008. "Does oil move equity prices? A global view," Energy Economics, Elsevier, vol. 30(3), pages 986-997, May.
    63. Wan, Daoxia & Xue, Rui & Linnenluecke, Martina & Tian, Jinfang & Shan, Yuli, 2021. "The impact of investor attention during COVID-19 on investment in clean energy versus fossil fuel firms," Finance Research Letters, Elsevier, vol. 43(C).
    64. Yahya, Muhammad & Kanjilal, Kakali & Dutta, Anupam & Uddin, Gazi Salah & Ghosh, Sajal, 2021. "Can clean energy stock price rule oil price? New evidences from a regime-switching model at first and second moments," Energy Economics, Elsevier, vol. 95(C).
    65. Sharma, Gagan Deep & Tiwari, Aviral Kumar & Erkut, Burak & Mundi, Hardeep Singh, 2021. "Exploring the nexus between non-renewable and renewable energy consumptions and economic development: Evidence from panel estimations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    66. Chen, Jinyu & Liang, Zhipeng & Ding, Qian & Liu, Zhenhua, 2022. "Extreme spillovers among fossil energy, clean energy, and metals markets: Evidence from a quantile-based analysis," Energy Economics, Elsevier, vol. 107(C).
    67. Liu, Zhifeng & Huynh, Toan Luu Duc & Dai, Peng-Fei, 2021. "The impact of COVID-19 on the stock market crash risk in China," Research in International Business and Finance, Elsevier, vol. 57(C).
    68. Zhang, Hao & Cai, Guixin & Yang, Dongxiao, 2020. "The impact of oil price shocks on clean energy stocks: Fresh evidence from multi-scale perspective," Energy, Elsevier, vol. 196(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Çelik, İsmail & Sak, Ahmet Furkan & Höl, Arife Özdemir & Vergili, Gizem, 2022. "The dynamic connectedness and hedging opportunities of implied and realized volatility: Evidence from clean energy ETFs," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    2. Tan, Xueping & Geng, Yong & Vivian, Andrew & Wang, Xinyu, 2021. "Measuring risk spillovers between oil and clean energy stocks: Evidence from a systematic framework," Resources Policy, Elsevier, vol. 74(C).
    3. Su, Chi-Wei & Pang, Li-Dong & Qin, Meng & Lobonţ, Oana-Ramona & Umar, Muhammad, 2023. "The spillover effects among fossil fuel, renewables and carbon markets: Evidence under the dual dilemma of climate change and energy crises," Energy, Elsevier, vol. 274(C).
    4. Matteo Foglia & Eliana Angelini, 2020. "Volatility Connectedness between Clean Energy Firms and Crude Oil in the COVID-19 Era," Sustainability, MDPI, vol. 12(23), pages 1-22, November.
    5. Umar, Muhammad & Farid, Saqib & Naeem, Muhammad Abubakr, 2022. "Time-frequency connectedness among clean-energy stocks and fossil fuel markets: Comparison between financial, oil and pandemic crisis," Energy, Elsevier, vol. 240(C).
    6. Duan, Xiaoping & Xiao, Ya & Ren, Xiaohang & Taghizadeh-Hesary, Farhad & Duan, Kun, 2023. "Dynamic spillover between traditional energy markets and emerging green markets: Implications for sustainable development," Resources Policy, Elsevier, vol. 82(C).
    7. Yahya, Muhammad & Kanjilal, Kakali & Dutta, Anupam & Uddin, Gazi Salah & Ghosh, Sajal, 2021. "Can clean energy stock price rule oil price? New evidences from a regime-switching model at first and second moments," Energy Economics, Elsevier, vol. 95(C).
    8. Ahmed, Walid M.A. & Sleem, Mohamed A.E., 2023. "Short- and long-run determinants of the price behavior of US clean energy stocks: A dynamic ARDL simulations approach," Energy Economics, Elsevier, vol. 124(C).
    9. Elsayed, Ahmed H. & Nasreen, Samia & Tiwari, Aviral Kumar, 2020. "Time-varying co-movements between energy market and global financial markets: Implication for portfolio diversification and hedging strategies," Energy Economics, Elsevier, vol. 90(C).
    10. Emre Cevik & Emrah I Cevik & Sel Dibooglu & Raif Cergibozan & Mehmet Fatih Bugan & Mehmet Akif Destek, 2024. "Connectedness and risk spillovers between crude oil and clean energy stock markets," Energy & Environment, , vol. 35(7), pages 3319-3339, November.
    11. Saeed, Tareq & Bouri, Elie & Alsulami, Hamed, 2021. "Extreme return connectedness and its determinants between clean/green and dirty energy investments," Energy Economics, Elsevier, vol. 96(C).
    12. Urom, Christian & Mzoughi, Hela & Ndubuisi, Gideon & Guesmi, Khaled, 2022. "Directional predictability and time-frequency spillovers among clean energy sectors and oil price uncertainty," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 326-341.
    13. Fernanda Fuentes & Rodrigo Herrera, 2020. "Dynamics of Connectedness in Clean Energy Stocks," Energies, MDPI, vol. 13(14), pages 1-19, July.
    14. Banerjee, Ameet Kumar & Sensoy, Ahmet & Goodell, John W., 2024. "Connectivity and spillover during crises: Highlighting the prominent and growing role of green energy," Energy Economics, Elsevier, vol. 129(C).
    15. Zhang, Jiahao & Chen, Xiaodan & Wei, Yu & Bai, Lan, 2023. "Does the connectedness among fossil energy returns matter for renewable energy stock returns? Fresh insights from the Cross-Quantilogram analysis," International Review of Financial Analysis, Elsevier, vol. 88(C).
    16. Fahmy, Hany, 2022. "The rise in investors’ awareness of climate risks after the Paris Agreement and the clean energy-oil-technology prices nexus," Energy Economics, Elsevier, vol. 106(C).
    17. Dutta, Anupam & Bouri, Elie & Rothovius, Timo & Uddin, Gazi Salah, 2023. "Climate risk and green investments: New evidence," Energy, Elsevier, vol. 265(C).
    18. Su, Xianfang & Zhao, Yachao, 2023. "What has the strongest connectedness with clean energy? Technology, substitutes, or raw materials," Energy Economics, Elsevier, vol. 128(C).
    19. Ding, Qian & Huang, Jianbai & Zhang, Hongwei, 2022. "Time-frequency spillovers among carbon, fossil energy and clean energy markets: The effects of attention to climate change," International Review of Financial Analysis, Elsevier, vol. 83(C).
    20. Farid, Saqib & Karim, Sitara & Naeem, Muhammad A. & Nepal, Rabindra & Jamasb, Tooraj, 2023. "Co-movement between dirty and clean energy: A time-frequency perspective," Energy Economics, Elsevier, vol. 119(C).

    More about this item

    Keywords

    Renewable energy; Fossil resources; Stock market; Connectedness; Portfolio diversification; Russia-Ukraine war; Volatility;
    All these keywords.

    JEL classification:

    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfin:v:85:y:2023:i:c:s1042443123000367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/intfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.