IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i16p5897-d1213777.html
   My bibliography  Save this article

A Universal Parametric Modeling Framework for Electric Machine Design

Author

Listed:
  • Zhenyang Qiao

    (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
    School of Mechatronic Engineering and Automation, Shanghai University, Shanghai 200444, China)

  • Dongdong Jiang

    (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China)

  • Weinong Fu

    (Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China)

Abstract

At present, the majority of electric machine design software employs its own unique machine data structure. However, when users need to transfer their designs between software, they are often faced with significant obstacles or cannot obtain a parametric model suitable for optimization. In order to solve this issue, a universal parametric modeling framework is proposed for electric machine design. The geometric structure is strictly constrained to ensure that the model will not interfere with each part because of the randomness of input parameters. A data structure consisting of points, lines, and surfaces is constructed, and a conversion interface for parametric modeling with different software is established. Consequently, this universal framework can automatically generate parametric models appropriate for different finite element analysis (FEA) software according to the input parameters. The framework is especially convenient for users who need to design or optimize an electric machine, particularly when FEA software is required for verification. Numerical verification is performed using different software based on interior permanent magnet (IPM) synchronous machines to demonstrate the effectiveness of the framework.

Suggested Citation

  • Zhenyang Qiao & Dongdong Jiang & Weinong Fu, 2023. "A Universal Parametric Modeling Framework for Electric Machine Design," Energies, MDPI, vol. 16(16), pages 1-13, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5897-:d:1213777
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/16/5897/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/16/5897/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Massimo Caruso & Antonino Oscar Di Tommaso & Fabrizio Marignetti & Rosario Miceli & Giuseppe Ricco Galluzzo, 2018. "A General Mathematical Formulation for Winding Layout Arrangement of Electrical Machines," Energies, MDPI, vol. 11(2), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Massimo Caruso & Antonino Oscar Di Tommaso & Fabrizio Marignetti & Rosario Miceli, 2020. "A General Investigation on the Differential Leakage Factor for Symmetrical and Asymmetrical Multiphase Winding Design," Energies, MDPI, vol. 13(20), pages 1-13, October.
    2. Akilu Yunusa-Kaltungo & Ruifeng Cao, 2020. "Towards Developing an Automated Faults Characterisation Framework for Rotating Machines. Part 1: Rotor-Related Faults," Energies, MDPI, vol. 13(6), pages 1-20, March.
    3. Armin Dietz & Antonino Oscar Di Tommaso & Fabrizio Marignetti & Rosario Miceli & Claudio Nevoloso, 2020. "Enhanced Flexible Algorithm for the Optimization of Slot Filling Factors in Electrical Machines," Energies, MDPI, vol. 13(5), pages 1-21, February.
    4. Massimo Caruso & Antonino Oscar Di Tommaso & Rosario Miceli & Fabio Viola, 2022. "A Cogging Torque Minimization Procedure for Interior Permanent Magnet Synchronous Motors Based on a Progressive Modification of the Rotor Lamination Geometry," Energies, MDPI, vol. 15(14), pages 1-19, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:16:p:5897-:d:1213777. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.