IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i5p1040-d325431.html
   My bibliography  Save this article

Mercury Migration Behavior from Flue Gas to Fly Ashes in a Commercial Coal-Fired CFB Power Plant

Author

Listed:
  • Xiaohang Li

    (Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China)

  • Yang Teng

    (Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China)

  • Kai Zhang

    (Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China
    Key Laboratory of Power Station Energy Transfer Conversion and System (North China Electric Power University), Ministry of Education, Beijing 102206, China)

  • Hao Peng

    (State Environmental Protection Key Laboratory of Efficient Utilization Technology of Coal Waste Resources, Shanxi University, Taiyuan 030006, China)

  • Fangqin Cheng

    (State Environmental Protection Key Laboratory of Efficient Utilization Technology of Coal Waste Resources, Shanxi University, Taiyuan 030006, China)

  • Kunio Yoshikawa

    (School of Environment and Society, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan)

Abstract

Mercury (Hg) emissions from coal-fired power plants are of increasing concern around the world. In this study, field tests were carried out to understand the Hg emission characteristics and its migration behaviors in a commercial CFB boiler unit with the electricity generation capacity of 25 MW. This boiler is equipped with one electrostatic precipitator (ESP) and two fabric filters (FFs) in series for removing particulates from the flue gas. The EPA 30B method was used for simultaneous flue gas Hg sampling at the inlet of the ESP and the outlet of the second FF. The Hg mass balance in the range of 104.07% to 112.87% was obtained throughout the CFB unit by measuring the Hg contents in the feed fuel, the fly ash and the bottom ash, as well as in the flue gas at the outlet of the particulate control device (PCD) system. More than 99% of Hg contained in the feed fuel was captured by the fly ash, whilst less than 1% of Hg was remained in the bottom ash or the flue gas after passing the PCD system. The gaseous Hg obviously migrated from the flue gas to the fly ash in the air pre-heater, where the flue gas temperature decreased from 250 °C at the inlet to 120 °C at the outlet. Other gaseous Hg migrated from the flue gas to the fly ash in the PCD system, as the Hg concentrations in the flue gas ranged from 3.14 to 4.14 μg/m 3 at the inlet of the ESP and ranged from 0.30 to 0.36 μg/m 3 at the outlet of the second FF. The average Hg contents in the fly ash samples collected from the ESP, the first FF and the second FF were 912.3, 1313.6 and 1464.9 ng/g, respectively, while the mean particle diameters of these fly ash samples tend to decrease along the flow pass in the PCD system. Compared to large fly ash particles, smaller fly ash particles exhibit higher Hg capture performance due to their high unburned carbon (UBC) content and large specific surface area. The migration of gaseous Hg from the flue gas to the fly ash downstream of the CFB boiler unit was easier than that downstream of the PC boiler unit due to high UBC content and specific surface area.

Suggested Citation

  • Xiaohang Li & Yang Teng & Kai Zhang & Hao Peng & Fangqin Cheng & Kunio Yoshikawa, 2020. "Mercury Migration Behavior from Flue Gas to Fly Ashes in a Commercial Coal-Fired CFB Power Plant," Energies, MDPI, vol. 13(5), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1040-:d:325431
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/5/1040/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/5/1040/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Schofield, Keith, 2017. "Mercury emission control: Phase II. Let’s now go passive," Energy, Elsevier, vol. 122(C), pages 311-318.
    2. Zeng, M. & Du, L.X. & Liao, D. & Chu, W.X. & Wang, Q.W. & Luo, Y. & Sun, Y., 2012. "Investigation on pressure drop and heat transfer performances of plate-fin iron air preheater unit with experimental and Genetic Algorithm methods," Applied Energy, Elsevier, vol. 92(C), pages 725-732.
    3. Heidel, Barna & Rogge, Tobias & Scheffknecht, Günter, 2016. "Controlled desorption of mercury in wet FGD waste water treatment," Applied Energy, Elsevier, vol. 162(C), pages 1211-1217.
    4. Gao, Mingming & Hong, Feng & Liu, Jizhen, 2017. "Investigation on energy storage and quick load change control of subcritical circulating fluidized bed boiler units," Applied Energy, Elsevier, vol. 185(P1), pages 463-471.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tadeusz Dziok, 2023. "Production of Low-Mercury Solid Fuel by Mild Pyrolysis Process," Energies, MDPI, vol. 16(7), pages 1-12, March.
    2. Yinjiao Su & Xuan Liu & Yang Teng & Kai Zhang, 2021. "A Preliminary Study on Dependence of Mercury Distribution on the Degree of Coalification in Ningwu Coalfield, Shanxi, China," Energies, MDPI, vol. 14(11), pages 1-17, May.
    3. Yinjiao Su & Xuan Liu & Yang Teng & Kai Zhang, 2021. "Mercury Speciation in Various Coals Based on Sequential Chemical Extraction and Thermal Analysis Methods," Energies, MDPI, vol. 14(9), pages 1-20, April.
    4. Qiang Lyu & Chang’an Wang & Xuan Liu & Defu Che, 2022. "Numerical Study on the Homogeneous Reactions of Mercury in a 600 MW Coal-Fired Utility Boiler," Energies, MDPI, vol. 15(2), pages 1-16, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Enhua & Zhang, Hongguang & Fan, Boyuan & Ouyang, Minggao & Yang, Kai & Yang, Fuyuan & Li, Xiaojuan & Wang, Zhen, 2015. "3D numerical analysis of exhaust flow inside a fin-and-tube evaporator used in engine waste heat recovery," Energy, Elsevier, vol. 82(C), pages 800-812.
    2. Zhang, Hongfu & Gao, Mingming & Fan, Haohao & Zhang, Kaiping & Zhang, Jiahui, 2022. "A dynamic model for supercritical once-through circulating fluidized bed boiler-turbine units," Energy, Elsevier, vol. 241(C).
    3. Yu Jiang & Zihua Tang & Xiaoyu Zhang & Chao Wang & Guoliang Song & Qinggang Lyu, 2023. "Comparative Analysis of Combustion Characteristics of a CFB Boiler during the Changes Process between High-Rated Loads and Low-Rated Loads," Energies, MDPI, vol. 16(17), pages 1-15, August.
    4. Chen, Heng & Qi, Zhen & Dai, Lihao & Li, Bin & Xu, Gang & Yang, Yongping, 2020. "Performance evaluation of a new conceptual combustion air preheating system in a 1000 MW coal-fueled power plant," Energy, Elsevier, vol. 193(C).
    5. Baklacioglu, Tolga & Turan, Onder & Aydin, Hakan, 2015. "Dynamic modeling of exergy efficiency of turboprop engine components using hybrid genetic algorithm-artificial neural networks," Energy, Elsevier, vol. 86(C), pages 709-721.
    6. Li, Yong & Wang, Yanhong & Cao, Lihua & Hu, Pengfei & Han, Wei, 2018. "Modeling for the performance evaluation of 600 MW supercritical unit operating No.0 high pressure heater," Energy, Elsevier, vol. 149(C), pages 639-661.
    7. Wang, Zhu & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Chong, Daotong & Yan, Junjie, 2020. "Flexibility and efficiency enhancement for double-reheat coal-fired power plants by control optimization considering boiler heat storage," Energy, Elsevier, vol. 201(C).
    8. Wang, Chaoyang & Zhao, Yongliang & Liu, Ming & Qiao, Yongqiang & Chong, Daotong & Yan, Junjie, 2018. "Peak shaving operational optimization of supercritical coal-fired power plants by revising control strategy for water-fuel ratio," Applied Energy, Elsevier, vol. 216(C), pages 212-223.
    9. Wang, Lu & Wei, Yi-Ming & Brown, Marilyn A., 2017. "Global transition to low-carbon electricity: A bibliometric analysis," Applied Energy, Elsevier, vol. 205(C), pages 57-68.
    10. Zhang, Kezhen & Zhao, Yongliang & Liu, Ming & Gao, Lin & Fu, Yue & Yan, Junjie, 2021. "Flexibility enhancement versus thermal efficiency of coal-fired power units during the condensate throttling processes," Energy, Elsevier, vol. 218(C).
    11. Ma, Hongqiang & Liang, Nuo & Liu, Yemin & Luo, Xinmei & Hou, Caiqin & Wang, Gang, 2021. "Experimental study on novel waste heat recovery system for sulfide-containing flue gas," Energy, Elsevier, vol. 227(C).
    12. Chen, Long & Xu, Guiyin & Rui, Zhenhua & Alshawabkeh, Akram N., 2019. "Demonstration of a feasible energy-water-environment nexus: Waste sulfur dioxide for water treatment," Applied Energy, Elsevier, vol. 250(C), pages 1011-1022.
    13. Hong, Feng & Chen, Jiyu & Wang, Rui & Long, Dongteng & Yu, Haoyang & Gao, Mingming, 2021. "Realization and performance evaluation for long-term low-load operation of a CFB boiler unit," Energy, Elsevier, vol. 214(C).
    14. Hong, Feng & Zhao, Yuzheng & Ji, Weiming & Fang, Fang & Hao, Junhong & Yang, Zhenyong & Kang, Jingqiu & Chen, Lei & Liu, Jizhen, 2024. "A feature-state observer and suppression control for generation-side low-frequency oscillation of thermal power units," Applied Energy, Elsevier, vol. 354(PA).
    15. Wang, Zhu & Liu, Ming & Yan, Hui & Yan, Junjie, 2022. "Optimization on coordinate control strategy assisted by high-pressure extraction steam throttling to achieve flexible and efficient operation of thermal power plants," Energy, Elsevier, vol. 244(PA).
    16. Wang, Zhu & Liu, Ming & Yan, Junjie, 2021. "Flexibility and efficiency co-enhancement of thermal power plant by control strategy improvement considering time varying and detailed boiler heat storage characteristics," Energy, Elsevier, vol. 232(C).
    17. Chen, Heng & Zhang, Meiyan & Xue, Kai & Xu, Gang & Yang, Yongping & Wang, Zepeng & Liu, Wenyi & Liu, Tong, 2020. "An innovative waste-to-energy system integrated with a coal-fired power plant," Energy, Elsevier, vol. 194(C).
    18. Sanjay Mukherjee & Abhishek Asthana & Martin Howarth & Jahedul Islam Chowdhury, 2020. "Techno-Economic Assessment of Waste Heat Recovery Technologies for the Food Processing Industry," Energies, MDPI, vol. 13(23), pages 1-26, December.
    19. Hong, Feng & Long, Dongteng & Chen, Jiyu & Gao, Mingming, 2020. "Modeling for the bed temperature 2D-interval prediction of CFB boilers based on long-short term memory network," Energy, Elsevier, vol. 194(C).
    20. Zhao, Haitao & Mu, Xueliang & Yang, Gang & George, Mike & Cao, Pengfei & Fanady, Billy & Rong, Siyu & Gao, Xiang & Wu, Tao, 2017. "Graphene-like MoS2 containing adsorbents for Hg0 capture at coal-fired power plants," Applied Energy, Elsevier, vol. 207(C), pages 254-264.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:5:p:1040-:d:325431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.