IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2361-d540825.html
   My bibliography  Save this article

Mercury Speciation in Various Coals Based on Sequential Chemical Extraction and Thermal Analysis Methods

Author

Listed:
  • Yinjiao Su

    (Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China)

  • Xuan Liu

    (Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China)

  • Yang Teng

    (Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China)

  • Kai Zhang

    (Beijing Key Laboratory of Emission Surveillance and Control for Thermal Power Generation, North China Electric Power University, Beijing 102206, China
    Key Laboratory of Power Station Energy Transfer Conversion and System, North China Electric Power University, Ministry of Education, Beijing 102206, China)

Abstract

Coal combustion is an anthropogenic source of mercury (Hg) emissions to the atmosphere. The strong toxicity and bioaccumulation potential have prompted attention to the control of mercury emissions. Pyrolysis has been regarded as an efficient Hg removal technology before coal combustion and other utilization processes. In this work, the Hg speciation in coal and its thermal stability were investigated by combined sequential chemical extraction and temperature programmed decomposition methods; the effect of coal rank on Hg speciation distribution and Hg release characteristics were clarified based on the weight loss of coal; the amount of Hg released; and the emission of sulfur-containing gases during coal pyrolysis. Five species of mercury were determined in this study: exchangeable Hg (F1), carbonate + sulfate + oxide bound Hg (F2), silicate + aluminosilicate bound Hg (F3), sulfide bound Hg (F4), and residual Hg (F5), which are quite distinct in different rank coals. Generally, Hg enriched in carbonates, sulfates, and oxides might migrate to sulfides with the transformation of minerals during the coalification process. The order of thermal stability of different Hg speciation in coal is F1 < F5 < F2 < F4 < F3. Meanwhile, the release of Hg is accompanied with sulfur gases during coal pyrolysis, which is heavily dependent on the coal rank.

Suggested Citation

  • Yinjiao Su & Xuan Liu & Yang Teng & Kai Zhang, 2021. "Mercury Speciation in Various Coals Based on Sequential Chemical Extraction and Thermal Analysis Methods," Energies, MDPI, vol. 14(9), pages 1-20, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2361-:d:540825
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2361/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2361/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaohang Li & Yang Teng & Kai Zhang & Hao Peng & Fangqin Cheng & Kunio Yoshikawa, 2020. "Mercury Migration Behavior from Flue Gas to Fly Ashes in a Commercial Coal-Fired CFB Power Plant," Energies, MDPI, vol. 13(5), pages 1-15, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuan Liu & Yang Teng & Kai Zhang, 2022. "Migration Behaviors of As, Se and Pb in Ultra-Low-Emission Coal-Fired Units and Effect of Co-Firing Sewage Sludge in CFB Boilers," Energies, MDPI, vol. 15(4), pages 1-19, February.
    2. Yinjiao Su & Xuan Liu & Yang Teng & Kai Zhang, 2021. "A Preliminary Study on Dependence of Mercury Distribution on the Degree of Coalification in Ningwu Coalfield, Shanxi, China," Energies, MDPI, vol. 14(11), pages 1-17, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tadeusz Dziok, 2023. "Production of Low-Mercury Solid Fuel by Mild Pyrolysis Process," Energies, MDPI, vol. 16(7), pages 1-12, March.
    2. Qiang Lyu & Chang’an Wang & Xuan Liu & Defu Che, 2022. "Numerical Study on the Homogeneous Reactions of Mercury in a 600 MW Coal-Fired Utility Boiler," Energies, MDPI, vol. 15(2), pages 1-16, January.
    3. Yinjiao Su & Xuan Liu & Yang Teng & Kai Zhang, 2021. "A Preliminary Study on Dependence of Mercury Distribution on the Degree of Coalification in Ningwu Coalfield, Shanxi, China," Energies, MDPI, vol. 14(11), pages 1-17, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2361-:d:540825. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.