IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p941-d322761.html
   My bibliography  Save this article

The Potential of Pressurised Water Reactors to Provide Flexible Response in Future Electricity Grids

Author

Listed:
  • Aiden Peakman

    (School of Engineering, University of Liverpool, Liverpool L69 3GH, UK
    National Nuclear Laboratory, Chadwick House, Warrington WA3 6AE, UK)

  • Bruno Merk

    (School of Engineering, University of Liverpool, Liverpool L69 3GH, UK
    National Nuclear Laboratory, Chadwick House, Warrington WA3 6AE, UK)

  • Kevin Hesketh

    (National Nuclear Laboratory, Chadwick House, Warrington WA3 6AE, UK)

Abstract

The electricity market is undergoing significant change with the increasing deployment of Variable Renewable Energy Sources (VRES) and the adoption of policies to electrify transport, heating and industry, which will continue to increase demands on all conventional power plants including nuclear. The increase in VRES also puts additional emphasis on services such as inertia and frequency response that only conventional plants, including nuclear, are readily able to meet. This study discusses what factors limit the ability of nuclear power plants to provide flexible response and how the UK nuclear power plants might be affected by the changes in future demand profiles. The study focuses on what impact there will be on current Pressurised Water Reactor (PWR) plants, though it also considers Small Modular Pressurised Water Reactor plants which might offer benefits with respect to improved power manoeuvrability. The main finding is that the most important attribute is the minimum power level for long-term operation, followed by the speed at which the plants can be brought online (that is, both start-up rate and ramp rate during power operation). With respect to both of these attributes, new build future PWR plants could potentially achieve large and rapid power changes by dumping part of the steam directly into the condenser, bypassing the steam turbine. Discussions with plant operators highlighted that there is currently limited demand for flexible operation in the UK from nuclear plants when other power plants are readily available to partake in flexible operation. The lack of any requirement for nuclear plants to operate flexibly means that the UK lags behind France, for example, which has much more experience in nonstationary operation of nuclear power plants. The paper also draws attention to the fact that with increasing VRES, there will be fewer plants able to provide rotational inertia and therefore more emphasis on the role the remaining plants (which include nuclear) can play in maintaining grid stability.

Suggested Citation

  • Aiden Peakman & Bruno Merk & Kevin Hesketh, 2020. "The Potential of Pressurised Water Reactors to Provide Flexible Response in Future Electricity Grids," Energies, MDPI, vol. 13(4), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:941-:d:322761
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/941/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/941/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Heiko Dunkelberg & Maximilian Sondermann & Henning Meschede & Jens Hesselbach, 2019. "Assessment of Flexibilisation Potential by Changing Energy Sources Using Monte Carlo Simulation," Energies, MDPI, vol. 12(4), pages 1-24, February.
    2. Allegra De Filippo & Michele Lombardi & Michela Milano, 2017. "User-Aware Electricity Price Optimization for the Competitive Market," Energies, MDPI, vol. 10(9), pages 1-23, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aiden Peakman & Robert Gregg, 2020. "The Fuel Cycle Implications of Nuclear Process Heat," Energies, MDPI, vol. 13(22), pages 1-19, November.
    2. Choong-koo Chang & Harold Chisano Oyando, 2022. "Review of the Requirements for Load Following of Small Modular Reactors," Energies, MDPI, vol. 15(17), pages 1-12, August.
    3. Paweł Sokólski & Tomasz A. Rutkowski & Bartosz Ceran & Dariusz Horla & Daria Złotecka, 2021. "Power System Stabilizer as a Part of a Generator MPC Adaptive Predictive Control System," Energies, MDPI, vol. 14(20), pages 1-25, October.
    4. Mohamed Hadri & Vincenzo Trovato & Agnes Bialecki & Bruno Merk & Aiden Peakman, 2021. "Assessment of High-Electrification UK Scenarios with Varying Levels of Nuclear Power and Associated Post-Fault Behaviour," Energies, MDPI, vol. 14(6), pages 1-23, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Florian Schlosser & Ron-Hendrik Peesel & Henning Meschede & Matthias Philipp & Timothy G. Walmsley & Michael R. W. Walmsley & Martin J. Atkins, 2019. "Design of Robust Total Site Heat Recovery Loops via Monte Carlo Simulation," Energies, MDPI, vol. 12(5), pages 1-17, March.
    2. Wolf, Isabel & Holzapfel, Peter K.R. & Meschede, Henning & Finkbeiner, Matthias, 2023. "On the potential of temporally resolved GHG emission factors for load shifting: A case study on electrified steam generation," Applied Energy, Elsevier, vol. 348(C).
    3. Masoud Ahmadipour & Hashim Hizam & Mohammad Lutfi Othman & Mohd Amran Mohd Radzi, 2018. "An Anti-Islanding Protection Technique Using a Wavelet Packet Transform and a Probabilistic Neural Network," Energies, MDPI, vol. 11(10), pages 1-31, October.
    4. Tumiran & Lesnanto Multa Putranto & Roni Irnawan & Sarjiya & Adi Priyanto & Suroso Isnandar & Ira Savitri, 2021. "Transmission Expansion Planning for the Optimization of Renewable Energy Integration in the Sulawesi Electricity System," Sustainability, MDPI, vol. 13(18), pages 1-20, September.
    5. Justyna Smagowicz & Cezary Szwed & Dawid Dąbal & Pavel Scholz, 2022. "A Simulation Model of Power Demand Management by Manufacturing Enterprises under the Conditions of Energy Sector Transformation," Energies, MDPI, vol. 15(9), pages 1-27, April.
    6. Chiou-Jye Huang & Ping-Huan Kuo, 2018. "A Short-Term Wind Speed Forecasting Model by Using Artificial Neural Networks with Stochastic Optimization for Renewable Energy Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    7. Srete Nikolovski & Hamid Reza Baghaee & Dragan Mlakić, 2018. "ANFIS-Based Peak Power Shaving/Curtailment in Microgrids Including PV Units and BESSs," Energies, MDPI, vol. 11(11), pages 1-23, October.
    8. Daniel Ganea & Elena Mereuta & Liliana Rusu, 2018. "Estimation of the Near Future Wind Power Potential in the Black Sea," Energies, MDPI, vol. 11(11), pages 1-21, November.
    9. Wei Dong & Qiang Yang & Xinli Fang, 2018. "Multi-Step Ahead Wind Power Generation Prediction Based on Hybrid Machine Learning Techniques," Energies, MDPI, vol. 11(8), pages 1-19, July.
    10. Walmsley, Timothy Gordon & Philipp, Matthias & Picón-Núñez, Martín & Meschede, Henning & Taylor, Matthew Thomas & Schlosser, Florian & Atkins, Martin John, 2023. "Hybrid renewable energy utility systems for industrial sites: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    11. Nazim Hajiyev & Klaudia Smoląg & Ali Abbasov & Valeriy Prasolov, 2020. "Energy War Strategies: The 21st Century Experience," Energies, MDPI, vol. 13(21), pages 1-15, November.
    12. Martin Onyeka Okoye & Junyou Yang & Zhenjiang Lei & Jingwei Yuan & Huichao Ji & Haixin Wang & Jiawei Feng & Tunmise Ayode Otitoju & Weidong Li, 2020. "Predictive Reliability Assessment of Generation System," Energies, MDPI, vol. 13(17), pages 1-13, August.
    13. Stefano Bianchi & Allegra De Filippo & Sandro Magnani & Gabriele Mosaico & Federico Silvestro, 2021. "VIRTUS Project: A Scalable Aggregation Platform for the Intelligent Virtual Management of Distributed Energy Resources," Energies, MDPI, vol. 14(12), pages 1-31, June.
    14. Patrizia Beraldi & Antonio Violi & Maria Elena Bruni & Gianluca Carrozzino, 2017. "A Probabilistically Constrained Approach for the Energy Procurement Problem," Energies, MDPI, vol. 10(12), pages 1-17, December.
    15. Jian Yang & Xin Zhao & Haikun Wei & Kanjian Zhang, 2019. "Sample Selection Based on Active Learning for Short-Term Wind Speed Prediction," Energies, MDPI, vol. 12(3), pages 1-12, January.
    16. Guoying Lin & Yuyao Yang & Feng Pan & Sijian Zhang & Fen Wang & Shuai Fan, 2019. "An Optimal Energy-Saving Strategy for Home Energy Management Systems with Bounded Customer Rationality," Future Internet, MDPI, vol. 11(4), pages 1-16, April.
    17. Sizhou Sun & Lisheng Wei & Jie Xu & Zhenni Jin, 2019. "A New Wind Speed Forecasting Modeling Strategy Using Two-Stage Decomposition, Feature Selection and DAWNN," Energies, MDPI, vol. 12(3), pages 1-24, January.
    18. Rafik Nafkha & Krzysztof Gajowniczek & Tomasz Ząbkowski, 2018. "Do Customers Choose Proper Tariff? Empirical Analysis Based on Polish Data Using Unsupervised Techniques," Energies, MDPI, vol. 11(3), pages 1-17, February.
    19. Yang Xu & Jiahua Hu & Yizheng Wang & Weiwei Zhang & Wei Wu, 2022. "Understanding the Economic Responses to China’s Electricity Price-Cutting Policy: Evidence from Zhejiang Province," Sustainability, MDPI, vol. 14(18), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:941-:d:322761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.