IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p813-d320271.html
   My bibliography  Save this article

Catalytic Steam Reforming of Toluene: Understanding the Influence of the Main Reaction Parameters over a Reference Catalyst

Author

Listed:
  • Hua Lun Zhu

    (Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK)

  • Laura Pastor-Pérez

    (Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK)

  • Marcos Millan

    (Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK)

Abstract

Identifying the suitable reaction conditions is key to achieve high performance and economic efficiency in any catalytic process. In this study, the catalytic performance of a Ni/Al 2 O 3 catalyst, a benchmark system—was investigated in steam reforming of toluene as a biomass gasification tar model compound to explore the effect of reforming temperature, steam to carbon (S/C) ratio and residence time on toluene conversion and gas products. An S/C molar ratio range from one to three and temperature range from 700 to 900 °C was selected according to thermodynamic equilibrium calculations, and gas hourly space velocity (GHSV) was varied from 30,600 to 122,400 h −1 based on previous work. The results suggest that 800 °C, GHSV 61,200 h −1 and S/C ratio 3 provide favourable operating conditions for steam reforming of toluene in order to get high toluene conversion and hydrogen productivity, achieving a toluene to gas conversion of 94% and H 2 production of 13 mol/mol toluene.

Suggested Citation

  • Hua Lun Zhu & Laura Pastor-Pérez & Marcos Millan, 2020. "Catalytic Steam Reforming of Toluene: Understanding the Influence of the Main Reaction Parameters over a Reference Catalyst," Energies, MDPI, vol. 13(4), pages 1-14, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:813-:d:320271
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/813/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/813/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anis, Samsudin & Zainal, Z.A., 2011. "Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2355-2377, June.
    2. Guan, Guoqing & Kaewpanha, Malinee & Hao, Xiaogang & Abudula, Abuliti, 2016. "Catalytic steam reforming of biomass tar: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 450-461.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Guanyi & Li, Jian & Cheng, Zhanjun & Yan, Beibei & Ma, Wenchao & Yao, Jingang, 2018. "Investigation on model compound of biomass gasification tar cracking in microwave furnace: Comparative research," Applied Energy, Elsevier, vol. 217(C), pages 249-257.
    2. Kobori, Takahiro & Yoshikawa, Kunio & Ismail, Tamer M. & Yasser, T.M. & García, Abraham Castro & Kanazawa, Kiryu & Takahashi, Fumitake, 2022. "Effect of electron injection on oxidative pyrolysis of cellulose and polypropylene," Applied Energy, Elsevier, vol. 326(C).
    3. Li, Jian & Tao, Junyu & Yan, Beibei & Jiao, Liguo & Chen, Guanyi & Hu, Jianli, 2021. "Review of microwave-based treatments of biomass gasification tar," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    4. Li, Longzhi & Meng, Bo & Qin, Xiaomin & Yang, Zhijuan & Chen, Jian & Yan, Keshuo & Wang, Fumao, 2020. "Toluene microwave cracking and reforming over bio-char with in-situ activation and ex-situ impregnation of metal," Renewable Energy, Elsevier, vol. 149(C), pages 1205-1213.
    5. Zhang, Zhikun & Liu, Lina & Shen, Boxiong & Wu, Chunfei, 2018. "Preparation, modification and development of Ni-based catalysts for catalytic reforming of tar produced from biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1086-1109.
    6. Li, Jian & Jiao, Liguo & Tao, Junyu & Chen, Guanyi & Hu, Jianli & Yan, Beibei & Mansour, Mohy & Guo, Yaoyu & Ye, Peiwen & Ding, Zheng & Yu, Tianxiao, 2020. "Can microwave treat biomass tar? A comprehensive study based on experimental and net energy analysis," Applied Energy, Elsevier, vol. 272(C).
    7. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Rakesh N, & Dasappa, S., 2018. "A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1045-1064.
    9. Arena, Umberto & Di Gregorio, Fabrizio, 2014. "Energy generation by air gasification of two industrial plastic wastes in a pilot scale fluidized bed reactor," Energy, Elsevier, vol. 68(C), pages 735-743.
    10. Bassey, Uduak & Sarquah, Khadija & Hartmann, Michael & Tom, Abasi-ofon & Beck, Gesa & Antwi, Edward & Narra, Satyanarayana & Nelles, Michael, 2023. "Thermal treatment options for single-use, multilayered and composite waste plastics in Africa," Energy, Elsevier, vol. 270(C).
    11. Giulio Allesina & Simone Pedrazzi, 2021. "Barriers to Success: A Technical Review on the Limits and Possible Future Roles of Small Scale Gasifiers," Energies, MDPI, vol. 14(20), pages 1-23, October.
    12. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    13. Pan, Xuwei & Wu, Yan & Li, Tingzhen & Lan, Guoxin & Shen, Jia & Yu, Yue & Xue, Ping & Chen, Dan & Wang, Maoqing & Fu, Chuan, 2023. "A study of co-pyrolysis of sewage sludge and rice husk for syngas production based on a cyclic catalytic integrated process system," Renewable Energy, Elsevier, vol. 215(C).
    14. Neves, Renato Cruz & Klein, Bruno Colling & da Silva, Ricardo Justino & Rezende, Mylene Cristina Alves Ferreira & Funke, Axel & Olivarez-Gómez, Edgardo & Bonomi, Antonio & Maciel-Filho, Rubens, 2020. "A vision on biomass-to-liquids (BTL) thermochemical routes in integrated sugarcane biorefineries for biojet fuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Hu, Mian & Laghari, Mahmood & Cui, Baihui & Xiao, Bo & Zhang, Beiping & Guo, Dabin, 2018. "Catalytic cracking of biomass tar over char supported nickel catalyst," Energy, Elsevier, vol. 145(C), pages 228-237.
    16. Cheng, Yoke Wang & Khan, Maksudur R. & Ng, Kim Hoong & Wongsakulphasatch, Suwimol & Cheng, Chin Kui, 2019. "Harnessing renewable hydrogen-rich syngas from valorization of palm oil mill effluent (POME) using steam reforming technique," Renewable Energy, Elsevier, vol. 138(C), pages 1114-1126.
    17. Ruivo, Luís & Silva, Tiago & Neves, Daniel & Tarelho, Luís & Frade, Jorge, 2023. "Thermodynamic guidelines for improved operation of iron-based catalysts in gasification of biomass," Energy, Elsevier, vol. 268(C).
    18. Parrillo, Francesco & Ardolino, Filomena & Calì, Gabriele & Marotto, Davide & Pettinau, Alberto & Arena, Umberto, 2021. "Fluidized bed gasification of eucalyptus chips: Axial profiles of syngas composition in a pilot scale reactor," Energy, Elsevier, vol. 219(C).
    19. Song, Hee Gaen & Chun, Young Nam, 2020. "Tar decomposition-reforming conversion on microwave-heating carbon receptor," Energy, Elsevier, vol. 199(C).
    20. Gao, Ying & Wang, Yuang & Jiang, Yue & Guo, Yuan & Xu, Jiayu & Ran, Shuai & Qian, Kezhen & Zhang, Hong & Xu, Hui & Yang, Hui Ying, 2023. "Enhancement of hydrogen production in steam gasification of sludge: Comparing different strategies for deeper conversion of hydrogen sources in biomass," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:813-:d:320271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.