IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i4p792-d319384.html
   My bibliography  Save this article

Multi-State Household Appliance Identification Based on Convolutional Neural Networks and Clustering

Author

Listed:
  • Ying Zhang

    (College of Information Science and Engineering, Ocean University of China, Qingdao 266000, China)

  • Bo Yin

    (College of Information Science and Engineering, Ocean University of China, Qingdao 266000, China
    Pilot National Laboratory for Marine Science and Technology, Qingdao 266000, China)

  • Yanping Cong

    (College of Information Science and Engineering, Ocean University of China, Qingdao 266000, China)

  • Zehua Du

    (College of Information Science and Engineering, Ocean University of China, Qingdao 266000, China)

Abstract

Non-intrusive load monitoring, a convenient way to discern the energy consumption of a house, has been studied extensively. However, most research works have been carried out based on a hypothetical condition that each electric appliance has only one running state. This leads to low identification accuracy for multi-state electric appliances. To deal with this problem, a method for identifying the type and state of electric appliances based on a power time series is proposed in this paper. First, to identify the type of appliance, a convolutional neural network model was constructed that incorporated residual modules. Then, a k-means clustering algorithm was applied to calculate the number of states of the appliance. Finally, in order to identify the states of the appliances, different k-means clustering models were established for different multi-state electric appliances. Experimental results show effectiveness of the proposed method in identifying both the type and the running state of electric appliances.

Suggested Citation

  • Ying Zhang & Bo Yin & Yanping Cong & Zehua Du, 2020. "Multi-State Household Appliance Identification Based on Convolutional Neural Networks and Clustering," Energies, MDPI, vol. 13(4), pages 1-12, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:792-:d:319384
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/4/792/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/4/792/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dinesh, Chinthaka & Welikala, Shirantha & Liyanage, Yasitha & Ekanayake, Mervyn Parakrama B. & Godaliyadda, Roshan Indika & Ekanayake, Janaka, 2017. "Non-intrusive load monitoring under residential solar power influx," Applied Energy, Elsevier, vol. 205(C), pages 1068-1080.
    2. Pascal A. Schirmer & Iosif Mporas, 2019. "Statistical and Electrical Features Evaluation for Electrical Appliances Energy Disaggregation," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    3. Salvina Gagliano & Fabiana Cairone & Angelo Amenta & Maide Bucolo, 2019. "A Real Time Feed Forward Control of Slug Flow in Microchannels †," Energies, MDPI, vol. 12(13), pages 1-11, July.
    4. Marco Fagiani & Roberto Bonfigli & Emanuele Principi & Stefano Squartini & Luigi Mandolini, 2019. "A Non-Intrusive Load Monitoring Algorithm Based on Non-Uniform Sampling of Power Data and Deep Neural Networks," Energies, MDPI, vol. 12(7), pages 1-26, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hasan Rafiq & Xiaohan Shi & Hengxu Zhang & Huimin Li & Manesh Kumar Ochani, 2020. "A Deep Recurrent Neural Network for Non-Intrusive Load Monitoring Based on Multi-Feature Input Space and Post-Processing," Energies, MDPI, vol. 13(9), pages 1-26, May.
    2. Patrick Huber & Alberto Calatroni & Andreas Rumsch & Andrew Paice, 2021. "Review on Deep Neural Networks Applied to Low-Frequency NILM," Energies, MDPI, vol. 14(9), pages 1-34, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A.S. Jameel Hassan & Umar Marikkar & G.W. Kasun Prabhath & Aranee Balachandran & W.G. Chaminda Bandara & Parakrama B. Ekanayake & Roshan I. Godaliyadda & Janaka B. Ekanayake, 2021. "A Sensitivity Matrix Approach Using Two-Stage Optimization for Voltage Regulation of LV Networks with High PV Penetration," Energies, MDPI, vol. 14(20), pages 1-24, October.
    2. Shi, Xin & Ming, Hao & Shakkottai, Srinivas & Xie, Le & Yao, Jianguo, 2019. "Nonintrusive load monitoring in residential households with low-resolution data," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    3. Cristina Puente & Rafael Palacios & Yolanda González-Arechavala & Eugenio Francisco Sánchez-Úbeda, 2020. "Non-Intrusive Load Monitoring (NILM) for Energy Disaggregation Using Soft Computing Techniques," Energies, MDPI, vol. 13(12), pages 1-20, June.
    4. Elnaz Azizi & Mohammad T. H. Beheshti & Sadegh Bolouki, 2021. "Event Matching Classification Method for Non-Intrusive Load Monitoring," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    5. Wesley Angelino de Souza & Fernando Deluno Garcia & Fernando Pinhabel Marafão & Luiz Carlos Pereira da Silva & Marcelo Godoy Simões, 2019. "Load Disaggregation Using Microscopic Power Features and Pattern Recognition," Energies, MDPI, vol. 12(14), pages 1-18, July.
    6. Chaminda Bandara, W.G. & Godaliyadda, G.M.R.I. & Ekanayake, M.P.B. & Ekanayake, J.B., 2020. "Coordinated photovoltaic re-phasing: A novel method to maximize renewable energy integration in low voltage networks by mitigating network unbalances," Applied Energy, Elsevier, vol. 280(C).
    7. Moreno Jaramillo, Andres F. & Laverty, David M. & Morrow, D. John & Martinez del Rincon, Jesús & Foley, Aoife M., 2021. "Load modelling and non-intrusive load monitoring to integrate distributed energy resources in low and medium voltage networks," Renewable Energy, Elsevier, vol. 179(C), pages 445-466.
    8. Salil Bharany & Sandeep Sharma & Sumit Badotra & Osamah Ibrahim Khalaf & Youseef Alotaibi & Saleh Alghamdi & Fawaz Alassery, 2021. "Energy-Efficient Clustering Scheme for Flying Ad-Hoc Networks Using an Optimized LEACH Protocol," Energies, MDPI, vol. 14(19), pages 1-20, September.
    9. Marko Petkovšek & Mitja Nemec & Peter Zajec, 2021. "Algorithm Execution Time and Accuracy of NTC Thermistor-Based Temperature Measurements in Time-Critical Applications," Mathematics, MDPI, vol. 9(18), pages 1-16, September.
    10. José Francisco Sáez & Alfonso Baños, 2021. "Reset Control of Parallel MISO Systems," Mathematics, MDPI, vol. 9(15), pages 1-22, August.
    11. Yini Ni & Yanghong Xia & Zichen Li & Qifan Feng, 2023. "A Non-Intrusive Identification Approach for Residential Photovoltaic Systems Using Transient Features and TCN with Attention Mechanisms," Sustainability, MDPI, vol. 15(20), pages 1-22, October.
    12. Hasan Rafiq & Xiaohan Shi & Hengxu Zhang & Huimin Li & Manesh Kumar Ochani, 2020. "A Deep Recurrent Neural Network for Non-Intrusive Load Monitoring Based on Multi-Feature Input Space and Post-Processing," Energies, MDPI, vol. 13(9), pages 1-26, May.
    13. Bin Li & Zheng Cui & Qun Cao & Wei Shao, 2021. "Increasing Efficiency of a Finned Heat Sink Using Orthogonal Analysis," Energies, MDPI, vol. 14(3), pages 1-15, February.
    14. Zhuang Zheng & Hainan Chen & Xiaowei Luo, 2018. "A Supervised Event-Based Non-Intrusive Load Monitoring for Non-Linear Appliances," Sustainability, MDPI, vol. 10(4), pages 1-28, March.
    15. Welikala, Shirantha & Thelasingha, Neelanga & Akram, Muhammed & Ekanayake, Parakrama B. & Godaliyadda, Roshan I. & Ekanayake, Janaka B., 2019. "Implementation of a robust real-time non-intrusive load monitoring solution," Applied Energy, Elsevier, vol. 238(C), pages 1519-1529.
    16. Liu, Yu & Liu, Congxiao & Ling, Qicheng & Zhao, Xin & Gao, Shan & Huang, Xueliang, 2021. "Toward smart distributed renewable generation via multi-uncertainty featured non-intrusive interactive energy monitoring," Applied Energy, Elsevier, vol. 303(C).
    17. Patrick Huber & Alberto Calatroni & Andreas Rumsch & Andrew Paice, 2021. "Review on Deep Neural Networks Applied to Low-Frequency NILM," Energies, MDPI, vol. 14(9), pages 1-34, April.
    18. Mingzhe Zou & Shuyang Zhu & Jiacheng Gu & Lidija M. Korunovic & Sasa Z. Djokic, 2021. "Heating and Lighting Load Disaggregation Using Frequency Components and Convolutional Bidirectional Long Short-Term Memory Method," Energies, MDPI, vol. 14(16), pages 1-24, August.
    19. Antonio Ruano & Alvaro Hernandez & Jesus Ureña & Maria Ruano & Juan Garcia, 2019. "NILM Techniques for Intelligent Home Energy Management and Ambient Assisted Living: A Review," Energies, MDPI, vol. 12(11), pages 1-29, June.
    20. Mahfoud Drouaz & Bruno Colicchio & Ali Moukadem & Alain Dieterlen & Djafar Ould-Abdeslam, 2021. "New Time-Frequency Transient Features for Nonintrusive Load Monitoring," Energies, MDPI, vol. 14(5), pages 1-11, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:4:p:792-:d:319384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.