IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip2s0960148123014647.html
   My bibliography  Save this article

A spatial-temporal clustering for low ocean renewable energy resources using K-means clustering

Author

Listed:
  • Uti, Mat Nizam
  • Md Din, Ami Hassan
  • Yusof, Norhakim
  • Yaakob, Omar

Abstract

Advancements in space technology have enabled the acquisition of reliable marine data, facilitating research on the potential of ocean renewable energy as an alternative source that can reduce dependency on fossil fuels, subsequently mitigating climate change. However, the ocean renewable energy development in Malaysia has not received adequate attention from local authorities and communities due to low resources in this area. Insufficient in-situ data, both in spatial and temporal dimensions, poses challenges in investigating the characteristics of ocean parameters, hindering a thorough study of the potential for ocean renewable energy development. Hence, this paper aims to identify potential ocean renewable energy development locations using the altimetry data and spatial-temporal clustering using the K-means technique. Theoretically, Malaysian seas are suitable for harnessing wind and waves with energy density ranges of up to 104.69 kW/m2 and 4.21 kW/m, respectively. This study enhances the understanding of Malaysian potential for ocean renewable energy, providing valuable information to stakeholders and the government to increase their interest in ocean renewable energy as a sustainable source for electricity generation in the future.

Suggested Citation

  • Uti, Mat Nizam & Md Din, Ami Hassan & Yusof, Norhakim & Yaakob, Omar, 2023. "A spatial-temporal clustering for low ocean renewable energy resources using K-means clustering," Renewable Energy, Elsevier, vol. 219(P2).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014647
    DOI: 10.1016/j.renene.2023.119549
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123014647
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119549?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pennock, Shona & Coles, Daniel & Angeloudis, Athanasios & Bhattacharya, Saptarshi & Jeffrey, Henry, 2022. "Temporal complementarity of marine renewables with wind and solar generation: Implications for GB system benefits," Applied Energy, Elsevier, vol. 319(C).
    2. Bahareh Kamranzad & George Lavidas & Kaoru Takara, 2020. "Spatio-Temporal Assessment of Climate Change Impact on Wave Energy Resources Using Various Time Dependent Criteria," Energies, MDPI, vol. 13(3), pages 1-12, February.
    3. Aliashim Albani & Mohd Zamri Ibrahim, 2017. "Wind Energy Potential and Power Law Indexes Assessment for Selected Near-Coastal Sites in Malaysia," Energies, MDPI, vol. 10(3), pages 1-21, March.
    4. Sahoo, Somadutta & Zuidema, Christian & van Stralen, Joost N.P. & Sijm, Jos & Faaij, André, 2022. "Detailed spatial analysis of renewables’ potential and heat: A study of Groningen Province in the northern Netherlands," Applied Energy, Elsevier, vol. 318(C).
    5. Shi, Xueli & Liang, Bingchen & Du, Shengtao & Shao, Zhuxiao & Li, Shaowu, 2022. "Wave energy assessment in the China East Adjacent Seas based on a 25-year wave-current interaction numerical simulation," Renewable Energy, Elsevier, vol. 199(C), pages 1381-1407.
    6. Yaakob, Omar & Hashim, Farah Ellyza & Mohd Omar, Kamaludin & Md Din, Ami Hassan & Koh, Kho King, 2016. "Satellite-based wave data and wave energy resource assessment for South China Sea," Renewable Energy, Elsevier, vol. 88(C), pages 359-371.
    7. Khor, Cheng Seong & Lalchand, G., 2014. "A review on sustainable power generation in Malaysia to 2030: Historical perspective, current assessment, and future strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 952-960.
    8. Basri, Nor Afifah & Ramli, Ahmad Termizi & Aliyu, Abubakar Sadiq, 2015. "Malaysia energy strategy towards sustainability: A panoramic overview of the benefits and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1094-1105.
    9. Lim, Yun Seng & Koh, Siong Lee, 2010. "Analytical assessments on the potential of harnessing tidal currents for electricity generation in Malaysia," Renewable Energy, Elsevier, vol. 35(5), pages 1024-1032.
    10. Fairley, Iain & Lewis, Matthew & Robertson, Bryson & Hemer, Mark & Masters, Ian & Horrillo-Caraballo, Jose & Karunarathna, Harshinie & Reeve, Dominic E., 2020. "A classification system for global wave energy resources based on multivariate clustering," Applied Energy, Elsevier, vol. 262(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamranzad, Bahareh & Lin, Pengzhi, 2020. "Sustainability of wave energy resources in the South China Sea based on five decades of changing climate," Energy, Elsevier, vol. 210(C).
    2. Chien Bong, Cassendra Phun & Ho, Wai Shin & Hashim, Haslenda & Lim, Jeng Shiun & Ho, Chin Siong & Peng Tan, William Soo & Lee, Chew Tin, 2017. "Review on the renewable energy and solid waste management policies towards biogas development in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 988-998.
    3. Zakaria, Zulfirdaus & Kamarudin, Siti Kartom & Abd Wahid, Khairul Anuar & Abu Hassan, Saiful Hasmady, 2021. "The progress of fuel cell for malaysian residential consumption: Energy status and prospects to introduction as a renewable power generation system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    4. Akdemir, Kerem Ziya & Robertson, Bryson & Oikonomou, Konstantinos & Kern, Jordan & Voisin, Nathalie & Hanif, Sarmad & Bhattacharya, Saptarshi, 2023. "Opportunities for wave energy in bulk power system operations," Applied Energy, Elsevier, vol. 352(C).
    5. Cyril Anak John & Lian See Tan & Jully Tan & Peck Loo Kiew & Azmi Mohd Shariff & Hairul Nazirah Abdul Halim, 2021. "Selection of Renewable Energy in Rural Area Via Life Cycle Assessment-Analytical Hierarchy Process (LCA-AHP): A Case Study of Tatau, Sarawak," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    6. Mehdi Neshat & Nataliia Y. Sergiienko & Erfan Amini & Meysam Majidi Nezhad & Davide Astiaso Garcia & Bradley Alexander & Markus Wagner, 2020. "A New Bi-Level Optimisation Framework for Optimising a Multi-Mode Wave Energy Converter Design: A Case Study for the Marettimo Island, Mediterranean Sea," Energies, MDPI, vol. 13(20), pages 1-23, October.
    7. Simon Krüner & Christoph M. Hackl, 2022. "Nonlinear Modelling and Control of a Power Smoothing System for a Novel Wave Energy Converter Prototype," Sustainability, MDPI, vol. 14(21), pages 1-17, October.
    8. Neary, Vincent S. & Ahn, Seongho, 2023. "Global atlas of extreme significant wave heights and relative risk ratios," Renewable Energy, Elsevier, vol. 208(C), pages 130-140.
    9. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    10. Lau, Lin-Sea & Choong, Yuen-Onn & Wei, Chooi-Yi & Seow, Ai-Na & Choong, Chee-Keong & Senadjki, Abdelhak & Ching, Suet-Ling, 2020. "Investigating nonusers’ behavioural intention towards solar photovoltaic technology in Malaysia: The role of knowledge transmission and price value," Energy Policy, Elsevier, vol. 144(C).
    11. Defne, Zafer & Haas, Kevin A. & Fritz, Hermann M., 2011. "GIS based multi-criteria assessment of tidal stream power potential: A case study for Georgia, USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2310-2321, June.
    12. Gualtieri, Giovanni, 2019. "A comprehensive review on wind resource extrapolation models applied in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 215-233.
    13. Aliyu, Abubakar Sadiq & Dada, Joseph O. & Adam, Ibrahim Khalil, 2015. "Current status and future prospects of renewable energy in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 336-346.
    14. Lim, Xin-Le & Lam, Wei-Haur, 2014. "Public Acceptance of Marine Renewable Energy in Malaysia," Energy Policy, Elsevier, vol. 65(C), pages 16-26.
    15. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2017. "Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1332-1347.
    16. Luis M. Abadie & Nestor Goicoechea, 2021. "Old Wind Farm Life Extension vs. Full Repowering: A Review of Economic Issues and a Stochastic Application for Spain," Energies, MDPI, vol. 14(12), pages 1-24, June.
    17. Lim, Xin-Le & Lam, Wei-Haur & Hashim, Roslan, 2015. "Feasibility of marine renewable energy to the Feed-in Tariff system in Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 708-719.
    18. Nur Izzah Hamna A. Aziz & Marlia M. Hanafiah & Shabbir H. Gheewala & Haikal Ismail, 2020. "Bioenergy for a Cleaner Future: A Case Study of Sustainable Biogas Supply Chain in the Malaysian Energy Sector," Sustainability, MDPI, vol. 12(8), pages 1-24, April.
    19. deCastro, M. & Rusu, L. & Arguilé-Pérez, B. & Ribeiro, A. & Costoya, X. & Carvalho, D. & Gómez-Gesteira, M., 2024. "Different approaches to analyze the impact of future climate change on the exploitation of wave energy," Renewable Energy, Elsevier, vol. 220(C).
    20. Javidsharifi, Mahshid & Niknam, Taher & Aghaei, Jamshid & Mokryani, Geev, 2018. "Multi-objective short-term scheduling of a renewable-based microgrid in the presence of tidal resources and storage devices," Applied Energy, Elsevier, vol. 216(C), pages 367-381.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.