IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i7p1096-d380315.html
   My bibliography  Save this article

Hybrid LQR-PI Control for Microgrids under Unbalanced Linear and Nonlinear Loads

Author

Listed:
  • Gerardo Humberto Valencia-Rivera

    (Telematics (CA), Engineering Division (DICIS), Campus Irapuato-Salamanca, University of Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8 km, Comunidad de Palo Blanco, Salamanca 36885, Mexico)

  • Luis Ramon Merchan-Villalba

    (Telematics (CA), Engineering Division (DICIS), Campus Irapuato-Salamanca, University of Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8 km, Comunidad de Palo Blanco, Salamanca 36885, Mexico)

  • Guillermo Tapia-Tinoco

    (Telematics (CA), Engineering Division (DICIS), Campus Irapuato-Salamanca, University of Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8 km, Comunidad de Palo Blanco, Salamanca 36885, Mexico)

  • Jose Merced Lozano-Garcia

    (Telematics (CA), Engineering Division (DICIS), Campus Irapuato-Salamanca, University of Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8 km, Comunidad de Palo Blanco, Salamanca 36885, Mexico)

  • Mario Alberto Ibarra-Manzano

    (Telematics (CA), Engineering Division (DICIS), Campus Irapuato-Salamanca, University of Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8 km, Comunidad de Palo Blanco, Salamanca 36885, Mexico)

  • Juan Gabriel Avina-Cervantes

    (Telematics (CA), Engineering Division (DICIS), Campus Irapuato-Salamanca, University of Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8 km, Comunidad de Palo Blanco, Salamanca 36885, Mexico
    Author thanks the Universidad de Guanajuato by the financial support of the APC.)

Abstract

A hybrid Linear Quadratic Regulator (LQR) and Proportional-Integral (PI) control for a MicroGrid (MG) under unbalanced linear and nonlinear loads was presented and evaluated in this paper. The designed control strategy incorporates the microgrid behavior, low-cost LQR, and error reduction in the stationary state by the PI control, to reduce the overall energetic cost of the classical PI control applied to MGs. A Genetic Algorithm (GA) calculates the parameters of LQR with high-accuracy fitness function to obtain the optimal controller parameters as settling time and overshoot. The gain values of the classical PI controller were determined through the improved LQR values and geometrical root locus. When MG operates in the grid-tied mode under unbalanced conditions, the controller performance of the Current Source Inverter (CSI) of the MG is considerably affected. Consequently, the CSI operates in a negative-sequence mode to compensate for unbalanced current at the Point of Common Coupling (PCC) between the MG and the utility grid. The study cases involved the reduction of the negative-sequence percentage in the current at the PCC, mitigation of harmonics in the current signal injected by the MG, and close related power quality issues. All these cases have been analyzed by implementing an MG connected at the PCC of a low-voltage distribution network. A numerical model of the MG in Matlab/Simulink was implemented to verify the performance of the designed LQR-PI control to mitigate or overcome the power quality concerns. The extensive simulations have permitted verifying the robustness and effectiveness of the proposed strategy.

Suggested Citation

  • Gerardo Humberto Valencia-Rivera & Luis Ramon Merchan-Villalba & Guillermo Tapia-Tinoco & Jose Merced Lozano-Garcia & Mario Alberto Ibarra-Manzano & Juan Gabriel Avina-Cervantes, 2020. "Hybrid LQR-PI Control for Microgrids under Unbalanced Linear and Nonlinear Loads," Mathematics, MDPI, vol. 8(7), pages 1-25, July.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:7:p:1096-:d:380315
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/7/1096/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/7/1096/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    2. Seyyed Yousef Mousazadeh Mousavi & Alireza Jalilian & Mehdi Savaghebi & Josep M. Guerrero, 2017. "Flexible Compensation of Voltage and Current Unbalance and Harmonics in Microgrids," Energies, MDPI, vol. 10(10), pages 1-19, October.
    3. S. Augusti Lindiya & N. Subashini & K. Vijayarekha, 2019. "Cross Regulation Reduced Optimal Multivariable Controller Design for Single Inductor DC-DC Converters," Energies, MDPI, vol. 12(3), pages 1-26, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mansoor Alturki & Rabeh Abbassi & Abdullah Albaker & Houssem Jerbi, 2022. "A New Hybrid Synchronization PLL Scheme for Interconnecting Renewable Energy Sources to an Abnormal Electric Grid," Mathematics, MDPI, vol. 10(7), pages 1-21, March.
    2. Marcel Nicola & Claudiu-Ionel Nicola, 2022. "Improvement of Linear and Nonlinear Control for PMSM Using Computational Intelligence and Reinforcement Learning," Mathematics, MDPI, vol. 10(24), pages 1-34, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerardo Humberto Valencia-Rivera & Ivan Amaya & Jorge M. Cruz-Duarte & José Carlos Ortíz-Bayliss & Juan Gabriel Avina-Cervantes, 2021. "Hybrid Controller Based on LQR Applied to Interleaved Boost Converter and Microgrids under Power Quality Events," Energies, MDPI, vol. 14(21), pages 1-31, October.
    2. Nur Najihah Abu Bakar & Josep M. Guerrero & Juan C. Vasquez & Najmeh Bazmohammadi & Yun Yu & Abdullah Abusorrah & Yusuf A. Al-Turki, 2021. "A Review of the Conceptualization and Operational Management of Seaport Microgrids on the Shore and Seaside," Energies, MDPI, vol. 14(23), pages 1-31, November.
    3. Farhat Afzah Samoon & Ikhlaq Hussain & Sheikh Javed Iqbal, 2023. "ILA Optimisation Based Control for Enhancing DC Link Voltage with Seamless and Adaptive VSC Control in a PV-BES Based AC Microgrid," Energies, MDPI, vol. 16(21), pages 1-23, October.
    4. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    5. Hussain Abdalla Sajwani & Bassel Soudan & Abdul Ghani Olabi, 2024. "Empowering Sustainability: Understanding Determinants of Consumer Investment in Microgrid Technology in the UAE," Energies, MDPI, vol. 17(9), pages 1-28, May.
    6. Ray, Manojit & Chakraborty, Basab, 2022. "Impact of demand flexibility and tiered resilience on solar photovoltaic adoption in humanitarian settlements," Renewable Energy, Elsevier, vol. 193(C), pages 895-912.
    7. Dimitrios Trigkas & Chrysovalantou Ziogou & Spyros Voutetakis & Simira Papadopoulou, 2021. "Virtual Energy Storage in RES-Powered Smart Grids with Nonlinear Model Predictive Control," Energies, MDPI, vol. 14(4), pages 1-22, February.
    8. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    9. Matija Kostelac & Lin Herenčić & Tomislav Capuder, 2022. "Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options," Energies, MDPI, vol. 15(4), pages 1-17, February.
    10. Ahmed Y. Hatata & Mohamed A. Essa & Bishoy E. Sedhom, 2022. "Implementation and Design of FREEDM System Differential Protection Method Based on Internet of Things," Energies, MDPI, vol. 15(15), pages 1-24, August.
    11. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    12. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    13. Soheil Mohseni & Alan C. Brent & Daniel Burmester, 2020. "Community Resilience-Oriented Optimal Micro-Grid Capacity Expansion Planning: The Case of Totarabank Eco-Village, New Zealand," Energies, MDPI, vol. 13(15), pages 1-29, August.
    14. Zhao, Huiru & Li, Bingkang & Lu, Hao & Wang, Xuejie & Li, Hongze & Guo, Sen & Xue, Wanlei & Wang, Yuwei, 2022. "Economy-environment-energy performance evaluation of CCHP microgrid system: A hybrid multi-criteria decision-making method," Energy, Elsevier, vol. 240(C).
    15. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    16. Hammad Alnuman & Kuo-Hsien Hsia & Mohammadreza Askari Sepestanaki & Emad M. Ahmed & Saleh Mobayen & Ammar Armghan, 2023. "Design of Continuous Finite-Time Controller Based on Adaptive Tuning Approach for Disturbed Boost Converters," Mathematics, MDPI, vol. 11(7), pages 1-23, April.
    17. Kinnon, Michael Mac & Razeghi, Ghazal & Samuelsen, Scott, 2021. "The role of fuel cells in port microgrids to support sustainable goods movement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    18. Giulietti, Monica & Le Coq, Chloé & Willems, Bert & Anaya, Karim, 2019. "Smart Consumers in the Internet of Energy : Flexibility Markets & Services from Distributed Energy Resources," Other publications TiSEM 2edb43b5-bbd6-487d-abdf-7, Tilburg University, School of Economics and Management.
    19. Igual, R. & Medrano, C., 2020. "Research challenges in real-time classification of power quality disturbances applicable to microgrids: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    20. Tao Wang & Hongshan Li & Huihui Song & Meng Liu & Hongchen Liu, 2022. "The Cluster Method of Heterogeneous Distributed Units in a Low Voltage Distribution Network," Energies, MDPI, vol. 15(13), pages 1-11, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:7:p:1096-:d:380315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.