IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p6153-d449828.html
   My bibliography  Save this article

Optimizing Resource Utilization in Biomass Supply Chains by Creating Integrated Biomass Logistics Centers

Author

Listed:
  • Xuezhen Guo

    (Wageningen Food & Bio-Based Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands)

  • Juliën Voogt

    (Wageningen Food & Bio-Based Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands)

  • Bert Annevelink

    (Wageningen Food & Bio-Based Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands)

  • Joost Snels

    (Wageningen Food & Bio-Based Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands)

  • Argyris Kanellopoulos

    (Operations Research and Logistics, Wageningen University, Hollandseweg 1, 6706 KN Wageningen, The Netherlands)

Abstract

Bio-based supply chains are by nature complex to optimize. The new logistic concept of integrated biomass logistical center (IBLC) provides us the opportunity to make full use of the idle capacity for a food/feed plant to produce biobased products so that the entire chain efficiency can be improved. Although research has been conducted to analyze the IBLC concept, is yet to be an optimization model that can optimally arrange the activities in the supply chain where an IBLC stands in the middle. To fill the knowledge gap in the literature, this paper makes the first step to develop a MILP model that enables biobased supply chain optimization with the IBLC concept, which supports logistic and processing decisions in the chain. The model is applied in a case study for a feed and fodder plant in Spain where managerial insights have been derived for transferring the plant to a profitable IBLC.

Suggested Citation

  • Xuezhen Guo & Juliën Voogt & Bert Annevelink & Joost Snels & Argyris Kanellopoulos, 2020. "Optimizing Resource Utilization in Biomass Supply Chains by Creating Integrated Biomass Logistics Centers," Energies, MDPI, vol. 13(22), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6153-:d:449828
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/6153/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/6153/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mafakheri, Fereshteh & Nasiri, Fuzhan, 2014. "Modeling of biomass-to-energy supply chain operations: Applications, challenges and research directions," Energy Policy, Elsevier, vol. 67(C), pages 116-126.
    2. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    3. De Meyer, Annelies & Cattrysse, Dirk & Rasinmäki, Jussi & Van Orshoven, Jos, 2014. "Methods to optimise the design and management of biomass-for-bioenergy supply chains: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 657-670.
    4. Robert Perlack, Robert & Eaton, Lawrence & Thurhollow, Anthony & Langholtz, Matt & De La Torre Ugarte, Daniel, 2011. "US billion-ton update: biomass supply for a bioenergy and bioproducts industry," MPRA Paper 89324, University Library of Munich, Germany, revised 2011.
    5. Matthew Langholtz & Ingrid Busch & Abishek Kasturi & Michael R. Hilliard & Joanna McFarlane & Costas Tsouris & Srijib Mukherjee & Olufemi A. Omitaomu & Susan M. Kotikot & Melissa R. Allen-Dumas & Chri, 2020. "The Economic Accessibility of CO 2 Sequestration through Bioenergy with Carbon Capture and Storage (BECCS) in the US," Land, MDPI, vol. 9(9), pages 1-24, August.
    6. Pérez-Fortes, Mar & Laínez-Aguirre, José Miguel & Arranz-Piera, Pol & Velo, Enrique & Puigjaner, Luis, 2012. "Design of regional and sustainable bio-based networks for electricity generation using a multi-objective MILP approach," Energy, Elsevier, vol. 44(1), pages 79-95.
    7. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
    8. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    9. Jones, Glenn A. & Warner, Kevin J., 2016. "The 21st century population-energy-climate nexus," Energy Policy, Elsevier, vol. 93(C), pages 206-212.
    10. Rentizelas, Athanasios A. & Tolis, Athanasios J. & Tatsiopoulos, Ilias P., 2009. "Logistics issues of biomass: The storage problem and the multi-biomass supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 887-894, May.
    11. Lee, Minji & Cho, Seolhee & Kim, Jiyong, 2017. "A comprehensive model for design and analysis of bioethanol production and supply strategies from lignocellulosic biomass," Renewable Energy, Elsevier, vol. 112(C), pages 247-259.
    12. Roni, Mohammad S. & Thompson, David N. & Hartley, Damon S., 2019. "Distributed biomass supply chain cost optimization to evaluate multiple feedstocks for a biorefinery," Applied Energy, Elsevier, vol. 254(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yin Hui Lai & Irene Mei Leng Chew, 2022. "Wastewater System Integration: A Biogenic Waste Biorefinery Eco-Industrial Park," Sustainability, MDPI, vol. 14(24), pages 1-12, December.
    2. Marco Ugolini & Lucia Recchia & Giulio Guandalini & Giampaolo Manzolini, 2022. "Novel Methodology to Assess Advanced Biofuel Production at Regional Level: Case Study for Cereal Straw Supply Chains," Energies, MDPI, vol. 15(19), pages 1-21, September.
    3. Shiyu Chen & Wei Wang & Enrico Zio, 2021. "A Simulation-Based Multi-Objective Optimization Framework for the Production Planning in Energy Supply Chains," Energies, MDPI, vol. 14(9), pages 1-27, May.
    4. Jian Wong, Khai & Keat Ooi, Jun & Sin Woon, Kok & Ren Mong, Guo & Shadman, Saleh & Lam Ng, Wai, 2022. "A country-level Pareto-optimal palm waste utilisation network for economic and environmental sustainability," Energy, Elsevier, vol. 260(C).
    5. Iffat Abbas Abbasi & Hasbullah Ashari & Ijaz Yusuf, 2023. "System Dynamics Modelling: Integrating Empty Fruit Bunch Biomass Logistics to Reduce GHG Emissions," Resources, MDPI, vol. 12(4), pages 1-13, April.
    6. Santibañez-Aguilar, José Ezequiel & Quiroz-Ramírez, Juan José & Sánchez-Ramírez, Eduardo & Segovia-Hernández, Juan Gabriel & Flores-Tlacuahuac, Antonio & Ponce-Ortega, José María, 2022. "Marginalization index as social measure for Acetone-Butanol-Ethanol supply chain planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    7. Suzan Abdelhady & Mohamed A. Shalaby & Ahmed Shaban, 2021. "Techno-Economic Analysis for the Optimal Design of a National Network of Agro-Energy Biomass Power Plants in Egypt," Energies, MDPI, vol. 14(11), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mirkouei, Amin & Haapala, Karl R. & Sessions, John & Murthy, Ganti S., 2017. "A review and future directions in techno-economic modeling and optimization of upstream forest biomass to bio-oil supply chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 15-35.
    2. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
    3. Palander, Teijo & Haavikko, Hanna & Kärhä, Kalle, 2018. "Towards sustainable wood procurement in forest industry – The energy efficiency of larger and heavier vehicles in Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 100-118.
    4. Saghaei, Mahsa & Ghaderi, Hadi & Soleimani, Hamed, 2020. "Design and optimization of biomass electricity supply chain with uncertainty in material quality, availability and market demand," Energy, Elsevier, vol. 197(C).
    5. Tatiana M. Pinho & João Paulo Coelho & Germano Veiga & A. Paulo Moreira & José Boaventura-Cunha, 2017. "A Multilayer Model Predictive Control Methodology Applied to a Biomass Supply Chain Operational Level," Complexity, Hindawi, vol. 2017, pages 1-10, July.
    6. Faissal Jelti & Amine Allouhi & Mahmut Sami Büker & Rachid Saadani & Abdelmajid Jamil, 2021. "Renewable Power Generation: A Supply Chain Perspective," Sustainability, MDPI, vol. 13(3), pages 1-22, January.
    7. Leonel J. R. Nunes & Sandra Silva, 2023. "Optimization of the Residual Biomass Supply Chain: Process Characterization and Cost Analysis," Logistics, MDPI, vol. 7(3), pages 1-21, August.
    8. Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.
    9. Sarker, Bhaba R. & Wu, Bingqing & Paudel, Krishna P., 2019. "Modeling and optimization of a supply chain of renewable biomass and biogas: Processing plant location," Applied Energy, Elsevier, vol. 239(C), pages 343-355.
    10. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    11. Deboni, Tamires Liza & Simioni, Flávio José & Brand, Martha Andreia & Costa, Valdeci José, 2019. "Models for estimating the price of forest biomass used as an energy source: A Brazilian case," Energy Policy, Elsevier, vol. 127(C), pages 382-391.
    12. Espinoza Pérez, Andrea Teresa & Camargo, Mauricio & Narváez Rincón, Paulo César & Alfaro Marchant, Miguel, 2017. "Key challenges and requirements for sustainable and industrialized biorefinery supply chain design and management: A bibliographic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 350-359.
    13. Mosayeb Dashtpeyma & Reza Ghodsi, 2021. "Forest Biomass and Bioenergy Supply Chain Resilience: A Systematic Literature Review on the Barriers and Enablers," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    14. Vitale, Ignacio & Dondo, Rodolfo G. & González, Matías & Cóccola, Mariana E., 2022. "Modelling and optimization of material flows in the wood pellet supply chain," Applied Energy, Elsevier, vol. 313(C).
    15. Ghadge, Abhijeet & van der Werf, Sjoerd & Er Kara, Merve & Goswami, Mohit & Kumar, Pankaj & Bourlakis, Michael, 2020. "Modelling the impact of climate change risk on bioethanol supply chains," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    16. Luis Puigjaner & Mar Pérez-Fortes & José M. Laínez-Aguirre, 2015. "Towards a Carbon-Neutral Energy Sector: Opportunities and Challenges of Coordinated Bioenergy Supply Chains-A PSE Approach," Energies, MDPI, vol. 8(6), pages 1-48, June.
    17. Lo, Shirleen Lee Yuen & How, Bing Shen & Leong, Wei Dong & Teng, Sin Yong & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Techno-economic analysis for biomass supply chain: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Lan, Kai & Ou, Longwen & Park, Sunkyu & Kelley, Stephen S. & English, Burton C. & Yu, T. Edward & Larson, James & Yao, Yuan, 2021. "Techno-Economic Analysis of decentralized preprocessing systems for fast pyrolysis biorefineries with blended feedstocks in the southeastern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    19. De Meyer, Annelies & Cattrysse, Dirk & Van Orshoven, Jos, 2016. "Considering biomass growth and regeneration in the optimisation of biomass supply chains," Renewable Energy, Elsevier, vol. 87(P2), pages 990-1002.
    20. Ivanov, Boyan & Stoyanov, Stoyan, 2016. "A mathematical model formulation for the design of an integrated biodiesel-petroleum diesel blends system," Energy, Elsevier, vol. 99(C), pages 221-236.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6153-:d:449828. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.