IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v254y2019ics0306261919313479.html
   My bibliography  Save this article

Distributed biomass supply chain cost optimization to evaluate multiple feedstocks for a biorefinery

Author

Listed:
  • Roni, Mohammad S.
  • Thompson, David N.
  • Hartley, Damon S.

Abstract

Conventional practices of siting all biomass preprocessing operations at the biorefinery is widely believed to be the most cost-effective solution for feedstock supply because of economies of scale. However, biomass preprocessing operations could be decentralized by moving the preprocessing operations to distributed biomass preprocessing centers, also known as “depots” located near biomass sources. This study presents a comparative case study with multiple biomass resources to analyze biorefinery feedstock supply logistics designs having distributed depots and a primary depot co-located with the biorefinery. A mixed-integer linear programming model was developed to simultaneously optimize feedstock sourcing decisions, and optimal preprocessing depot locations and size, utilizing biomass resources from agricultural residue, energy and municipal solid waste to meet carbohydrate specifications and feedstock demand for a biochemical conversion process. Results from a case study in the US showed that a biorefinery could increase its feedstock supply draw area and supply volume by 57.3%, 177.4% respectively without increasing the feedstock delivered cost by adopting distributed depot-in the feedstock supply chain design. A distributed-depot-based supply chain can be more economical by selecting optimal mix of biomass resource, optimal siting and depot scales during feedstock supply chain design. The findings from this study indicate that a biorefinery can utilize dynamic blending to meet the feedstock quality specifications as well as larger supply radius in the distributed depot-based supply chain design to access more available biomass to handle potential feedstock supply uncertainty.

Suggested Citation

  • Roni, Mohammad S. & Thompson, David N. & Hartley, Damon S., 2019. "Distributed biomass supply chain cost optimization to evaluate multiple feedstocks for a biorefinery," Applied Energy, Elsevier, vol. 254(C).
  • Handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919313479
    DOI: 10.1016/j.apenergy.2019.113660
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919313479
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113660?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roni, Md.S. & Eksioglu, Sandra D. & Searcy, Erin & Jha, Krishna, 2014. "A supply chain network design model for biomass co-firing in coal-fired power plants," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 115-134.
    2. Ng, Rex T.L. & Kurniawan, Daniel & Wang, Hua & Mariska, Brian & Wu, Wenzhao & Maravelias, Christos T., 2018. "Integrated framework for designing spatially explicit biofuel supply chains," Applied Energy, Elsevier, vol. 216(C), pages 116-131.
    3. Gautam, Shuva & LeBel, Luc & Carle, Marc-André, 2017. "Supply chain model to assess the feasibility of incorporating a terminal between forests and biorefineries," Applied Energy, Elsevier, vol. 198(C), pages 377-384.
    4. de Jong, Sierk & Hoefnagels, Ric & Wetterlund, Elisabeth & Pettersson, Karin & Faaij, André & Junginger, Martin, 2017. "Cost optimization of biofuel production – The impact of scale, integration, transport and supply chain configurations," Applied Energy, Elsevier, vol. 195(C), pages 1055-1070.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lan, Kai & Ou, Longwen & Park, Sunkyu & Kelley, Stephen S. & English, Burton C. & Yu, T. Edward & Larson, James & Yao, Yuan, 2021. "Techno-Economic Analysis of decentralized preprocessing systems for fast pyrolysis biorefineries with blended feedstocks in the southeastern United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    2. Haji Esmaeili, Seyed Ali & Sobhani, Ahmad & Szmerekovsky, Joseph & Dybing, Alan & Pourhashem, Ghasideh, 2020. "First-generation vs. second-generation: A market incentives analysis for bioethanol supply chains with carbon policies," Applied Energy, Elsevier, vol. 277(C).
    3. Hossain, Tasmin & Jones, Daniela & Hartley, Damon & Griffel, L. Michael & Lin, Yingqian & Burli, Pralhad & Thompson, David N. & Langholtz, Matthew & Davis, Maggie & Brandt, Craig, 2021. "The nth-plant scenario for blended feedstock conversion and preprocessing nationwide: Biorefineries and depots," Applied Energy, Elsevier, vol. 294(C).
    4. Ge, Yuntian & Li, Lin & Yun, Lingxiang, 2021. "Modeling and economic optimization of cellulosic biofuel supply chain considering multiple conversion pathways," Applied Energy, Elsevier, vol. 281(C).
    5. Mohd Idris, Muhammad Nurariffudin & Hashim, Haslenda & Leduc, Sylvain & Yowargana, Ping & Kraxner, Florian & Woon, Kok Sin, 2021. "Deploying bioenergy for decarbonizing Malaysian energy sectors and alleviating renewable energy poverty," Energy, Elsevier, vol. 232(C).
    6. Hossain, Tasmin & Jones, Daniela S. & Hartley, Damon S. & Thompson, David N. & Langholtz, Matthew & Davis, Maggie, 2022. "Nth-plant scenario for forest resources and short rotation woody crops: Biorefineries and depots in the contiguous US," Applied Energy, Elsevier, vol. 325(C).
    7. Guo, Jian-Xin & Tan, Xianchun & Gu, Baihe & Zhu, Kaiwei, 2022. "Integration of supply chain management of hybrid biomass power plant with carbon capture and storage operation," Renewable Energy, Elsevier, vol. 190(C), pages 1055-1065.
    8. Xuezhen Guo & Juliën Voogt & Bert Annevelink & Joost Snels & Argyris Kanellopoulos, 2020. "Optimizing Resource Utilization in Biomass Supply Chains by Creating Integrated Biomass Logistics Centers," Energies, MDPI, vol. 13(22), pages 1-16, November.
    9. Frederik De Wieuw & Tom Pauwels & Christa Sys & Eddy Van de Voorde & Edwin van Hassel & Thierry Vanelslander & Jeffrey Willems, 2023. "Collection and Processing of Roadside Grass Clippings: A Supply Chain Optimization Case Study for East Flanders," Sustainability, MDPI, vol. 15(18), pages 1-24, September.
    10. Shahbazbegian, Vahid & Hosseini-Motlagh, Seyyed-Mahdi & Haeri, Abdorrahman, 2020. "Integrated forward/reverse logistics thin-film photovoltaic power plant supply chain network design with uncertain data," Applied Energy, Elsevier, vol. 277(C).
    11. Ramos-Hernández, Rocío & Sánchez-Ramírez, Cuauhtémoc & Mota-López, Dulce Rocio & Sandoval-Salas, Fabiola & García-Alcaraz, Jorge Luis, 2021. "Evaluation of bioenergy potential from coffee pulp trough System Dynamics," Renewable Energy, Elsevier, vol. 165(P1), pages 863-877.
    12. Sun, Yufeng & Yang, Bin & Wang, Yapeng & Zheng, Zipeng & Wang, Jinwei & Yue, Yaping & Mu, Wenlong & Xu, Guangyin & Jilai Ying,, 2023. "Emergy evaluation of biogas production system in China from perspective of collection radius," Energy, Elsevier, vol. 265(C).
    13. Huang, Endai & Zhang, Xiaolei & Rodriguez, Luis & Khanna, Madhu & de Jong, Sierk & Ting, K.C. & Ying, Yibin & Lin, Tao, 2019. "Multi-objective optimization for sustainable renewable jet fuel production: A case study of corn stover based supply chain system in Midwestern U.S," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    14. Lixia H. Lambert & Eric A. DeVuyst & Burton C. English & Rodney Holcomb, 2021. "Analyzing the Trade-Offs between Meeting Biorefinery Production Capacity and Feedstock Supply Cost: A Chance Constrained Approach," Energies, MDPI, vol. 14(16), pages 1-13, August.
    15. Zhang, Shuai & Lei, Qingyu & Wu, Le & Wang, Yuqi & Zheng, Lan & Chen, Xi, 2022. "Supply chain design and integration for the Co-Processing of bio-oil and vacuum gas oil in a refinery," Energy, Elsevier, vol. 241(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohd Idris, Muhammad Nurariffudin & Hashim, Haslenda & Leduc, Sylvain & Yowargana, Ping & Kraxner, Florian & Woon, Kok Sin, 2021. "Deploying bioenergy for decarbonizing Malaysian energy sectors and alleviating renewable energy poverty," Energy, Elsevier, vol. 232(C).
    2. Ng, Rex T.L. & Maravelias, Christos T., 2017. "Economic and energetic analysis of biofuel supply chains," Applied Energy, Elsevier, vol. 205(C), pages 1571-1582.
    3. De Laporte, Aaron V. & Ripplinger, David G., 2019. "The effects of site selection, opportunity costs and transportation costs on bioethanol production," Renewable Energy, Elsevier, vol. 131(C), pages 73-82.
    4. Akhtari, Shaghaygh & Sowlati, Taraneh & Griess, Verena C., 2018. "Integrated strategic and tactical optimization of forest-based biomass supply chains to consider medium-term supply and demand variations," Applied Energy, Elsevier, vol. 213(C), pages 626-638.
    5. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    6. Hadi Karimi & Sandra D. Ekşioğlu & Michael Carbajales-Dale, 2021. "A biobjective chance constrained optimization model to evaluate the economic and environmental impacts of biopower supply chains," Annals of Operations Research, Springer, vol. 296(1), pages 95-130, January.
    7. Ekaterina S. Titova, 2019. "Biofuel Application as a Factor of Sustainable Development Ensuring: The Case of Russia," Energies, MDPI, vol. 12(20), pages 1-30, October.
    8. Li, Yu & Kesharwani, Rajkamal & Sun, Zeyi & Qin, Ruwen & Dagli, Cihan & Zhang, Meng & Wang, Donghai, 2020. "Economic viability and environmental impact investigation for the biofuel supply chain using co-fermentation technology," Applied Energy, Elsevier, vol. 259(C).
    9. Krogh, Andreas & Lozano, Eliana M. & Grue, Jeppe & Pedersen, Thomas H., 2024. "Assessment of feasible site locations for biofuel production based on technoeconomic modelling and GHG impact analysis," Applied Energy, Elsevier, vol. 356(C).
    10. Diana Goettsch & Krystel K. Castillo-Villar & Maria Aranguren, 2020. "Machine-Learning Methods to Select Potential Depot Locations for the Supply Chain of Biomass Co-Firing," Energies, MDPI, vol. 13(24), pages 1-18, December.
    11. Malladi, Krishna Teja & Quirion-Blais, Olivier & Sowlati, Taraneh, 2018. "Development of a decision support tool for optimizing the short-term logistics of forest-based biomass," Applied Energy, Elsevier, vol. 216(C), pages 662-677.
    12. Dafnomilis, I. & Duinkerken, M.B. & Junginger, M. & Lodewijks, G. & Schott, D.L., 2018. "Optimal equipment deployment for biomass terminal operations," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 147-163.
    13. Hugo Guzmán-Bello & Iosvani López-Díaz & Miguel Aybar-Mejía & Jose Atilio de Frias, 2022. "A Review of Trends in the Energy Use of Biomass: The Case of the Dominican Republic," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    14. Baburam Rijal & Luc LeBel & Shuva H. Gautam & Pierre Cantegril, 2020. "A Sequential Optimization Approach in Tactical Planning for Value Creation in the Forest Products Industry," Sustainability, MDPI, vol. 12(12), pages 1-23, June.
    15. Lo, Shirleen Lee Yuen & How, Bing Shen & Leong, Wei Dong & Teng, Sin Yong & Rhamdhani, Muhammad Akbar & Sunarso, Jaka, 2021. "Techno-economic analysis for biomass supply chain: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Sushil R. Poudel & Md Abdul Quddus & Mohammad Marufuzzaman & Linkan Bian & Reuben F. Burch V, 2019. "Managing congestion in a multi-modal transportation network under biomass supply uncertainty," Annals of Operations Research, Springer, vol. 273(1), pages 739-781, February.
    17. Martín, Mariano & Grossmann, Ignacio E., 2018. "Optimal integration of renewable based processes for fuels and power production: Spain case study," Applied Energy, Elsevier, vol. 213(C), pages 595-610.
    18. Prinz, Robert & Väätäinen, Kari & Laitila, Juha & Sikanen, Lauri & Asikainen, Antti, 2019. "Analysis of energy efficiency of forest chip supply systems using discrete-event simulation," Applied Energy, Elsevier, vol. 235(C), pages 1369-1380.
    19. Valentyna Kukharets & Dalia Juočiūnienė & Taras Hutsol & Olena Sukmaniuk & Jonas Čėsna & Savelii Kukharets & Piotr Piersa & Szymon Szufa & Iryna Horetska & Alona Shevtsova, 2023. "An Algorithm for Managerial Actions on the Rational Use of Renewable Sources of Energy: Determination of the Energy Potential of Biomass in Lithuania," Energies, MDPI, vol. 16(1), pages 1-17, January.
    20. Sahoo, Kamalakanta & Bilek, Edward & Bergman, Richard & Mani, Sudhagar, 2019. "Techno-economic analysis of producing solid biofuels and biochar from forest residues using portable systems," Applied Energy, Elsevier, vol. 235(C), pages 578-590.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:254:y:2019:i:c:s0306261919313479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.