IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v96y2012icp122-132.html
   My bibliography  Save this article

Modeling and simulation of consumer response to dynamic pricing with enabled technologies

Author

Listed:
  • Valenzuela, Jorge
  • Thimmapuram, Prakash R.
  • Kim, Jinho

Abstract

Assessing the impacts of dynamic-pricing under the smart grid concept is becoming extremely important for deciding its full deployment. In this paper, we develop a model that represents the response of consumers to dynamic pricing. In the model, consumers use forecasted day-ahead prices to shift daily energy consumption from hours when the price is expected to be high to hours when the price is expected to be low while maintaining the total energy consumption as unchanged. We integrate the consumer response model into the Electricity Market Complex Adaptive System (EMCAS). EMCAS is an agent-based model that simulates restructured electricity markets. We explore the impacts of dynamic-pricing on price spikes, peak demand, consumer energy bills, power supplier profits, and congestion costs. A simulation of an 11-node test network that includes eight generation companies and five aggregated consumers is performed for a period of 1 month. In addition, we simulate the Korean power system.

Suggested Citation

  • Valenzuela, Jorge & Thimmapuram, Prakash R. & Kim, Jinho, 2012. "Modeling and simulation of consumer response to dynamic pricing with enabled technologies," Applied Energy, Elsevier, vol. 96(C), pages 122-132.
  • Handle: RePEc:eee:appene:v:96:y:2012:i:c:p:122-132
    DOI: 10.1016/j.apenergy.2011.11.022
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261911007197
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2011.11.022?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schroeder, Andreas, 2011. "Modeling storage and demand management in power distribution grids," Applied Energy, Elsevier, vol. 88(12), pages 4700-4712.
    2. Kannan, Ramachandran & Strachan, Neil, 2009. "Modelling the UK residential energy sector under long-term decarbonisation scenarios: Comparison between energy systems and sectoral modelling approaches," Applied Energy, Elsevier, vol. 86(4), pages 416-428, April.
    3. Wissner, Matthias, 2011. "The Smart Grid - A saucerful of secrets?," Applied Energy, Elsevier, vol. 88(7), pages 2509-2518, July.
    4. Faruqui, A. & Hajos, A. & Hledik, R.M. & Newell, S.A., 2010. "Fostering economic demand response in the Midwest ISO," Energy, Elsevier, vol. 35(4), pages 1544-1552.
    5. Aalami, H.A. & Moghaddam, M. Parsa & Yousefi, G.R., 2010. "Demand response modeling considering Interruptible/Curtailable loads and capacity market programs," Applied Energy, Elsevier, vol. 87(1), pages 243-250, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Menglian & Meinrenken, Christoph J. & Lackner, Klaus S., 2014. "Agent-based model for electricity consumption and storage to evaluate economic viability of tariff arbitrage for residential sector demand response," Applied Energy, Elsevier, vol. 126(C), pages 297-306.
    2. Nikzad, Mehdi & Mozafari, Babak & Bashirvand, Mahdi & Solaymani, Soodabeh & Ranjbar, Ali Mohamad, 2012. "Designing time-of-use program based on stochastic security constrained unit commitment considering reliability index," Energy, Elsevier, vol. 41(1), pages 541-548.
    3. Vardakas, John S. & Zorba, Nizar & Verikoukis, Christos V., 2015. "Performance evaluation of power demand scheduling scenarios in a smart grid environment," Applied Energy, Elsevier, vol. 142(C), pages 164-178.
    4. Wang, Yong & Li, Lin, 2015. "Time-of-use electricity pricing for industrial customers: A survey of U.S. utilities," Applied Energy, Elsevier, vol. 149(C), pages 89-103.
    5. Aghaei, Jamshid & Alizadeh, Mohammad-Iman, 2013. "Multi-objective self-scheduling of CHP (combined heat and power)-based microgrids considering demand response programs and ESSs (energy storage systems)," Energy, Elsevier, vol. 55(C), pages 1044-1054.
    6. Masa-Bote, D. & Castillo-Cagigal, M. & Matallanas, E. & Caamaño-Martín, E. & Gutiérrez, A. & Monasterio-Huelín, F. & Jiménez-Leube, J., 2014. "Improving photovoltaics grid integration through short time forecasting and self-consumption," Applied Energy, Elsevier, vol. 125(C), pages 103-113.
    7. Schroeder, Andreas, 2011. "Modeling storage and demand management in power distribution grids," Applied Energy, Elsevier, vol. 88(12), pages 4700-4712.
    8. Bae, Mungyu & Kim, Hwantae & Kim, Eugene & Chung, Albert Yongjoon & Kim, Hwangnam & Roh, Jae Hyung, 2014. "Toward electricity retail competition: Survey and case study on technical infrastructure for advanced electricity market system," Applied Energy, Elsevier, vol. 133(C), pages 252-273.
    9. Stötzer, Martin & Hauer, Ines & Richter, Marc & Styczynski, Zbigniew A., 2015. "Potential of demand side integration to maximize use of renewable energy sources in Germany," Applied Energy, Elsevier, vol. 146(C), pages 344-352.
    10. Li, Xin & Chen, Hsing Hung & Tao, Xiangnan, 2016. "Pricing and capacity allocation in renewable energy," Applied Energy, Elsevier, vol. 179(C), pages 1097-1105.
    11. Zixu Liu & Xiaojun Zeng & Fanlin Meng, 2018. "An Integration Mechanism between Demand and Supply Side Management of Electricity Markets," Energies, MDPI, vol. 11(12), pages 1-23, November.
    12. Yiqi Dong & Zuoji Dong, 2023. "Bibliometric Analysis of Game Theory on Energy and Natural Resource," Sustainability, MDPI, vol. 15(2), pages 1-19, January.
    13. Erdinc, Ozan, 2014. "Economic impacts of small-scale own generating and storage units, and electric vehicles under different demand response strategies for smart households," Applied Energy, Elsevier, vol. 126(C), pages 142-150.
    14. Chou, Jui-Sheng & Gusti Ayu Novi Yutami, I, 2014. "Smart meter adoption and deployment strategy for residential buildings in Indonesia," Applied Energy, Elsevier, vol. 128(C), pages 336-349.
    15. Nwulu, Nnamdi I. & Xia, Xiaohua, 2015. "Implementing a model predictive control strategy on the dynamic economic emission dispatch problem with game theory based demand response programs," Energy, Elsevier, vol. 91(C), pages 404-419.
    16. Haddadian, Hossein & Noroozian, Reza, 2017. "Optimal operation of active distribution systems based on microgrid structure," Renewable Energy, Elsevier, vol. 104(C), pages 197-210.
    17. McPherson, Madeleine & Stoll, Brady, 2020. "Demand response for variable renewable energy integration: A proposed approach and its impacts," Energy, Elsevier, vol. 197(C).
    18. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    19. Feuerriegel, Stefan & Neumann, Dirk, 2014. "Measuring the financial impact of demand response for electricity retailers," Energy Policy, Elsevier, vol. 65(C), pages 359-368.
    20. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:96:y:2012:i:c:p:122-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.