IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i22p6019-d446892.html
   My bibliography  Save this article

Potential of an Automated- and Image-Based Cell Counter to Accelerate Microalgal Research and Applications

Author

Listed:
  • Toshiyuki Takahashi

    (Department of Chemical Science and Engineering, National Institute of Technology (KOSEN), Miyakonojo College, Miyakonojo, Miyazaki 885-8567, Japan)

Abstract

Efforts to achieve Sustainable Development Goals (SDGs) have resulted in enhancement of the position of microalgae in feedstocks for food, feed, healthcare, and biofuels. However, stabile microalgal biorefineries require a sustainable and reliable management system of microalgae, which are sensitive to environmental changes. To expand microalgal applicability, assessment and maintenance of microalgal quality are crucial. Compared with conventional methods, including hemocytometry and turbidity, an automated- and image-based cell counter contributes to the establishment of routine management of microalgae with reduced work burden. This review presents the principle of an automated cell counter and highlights the functional capacities of the device for microalgal management. The method utilizing fluorescence function to evaluate the chlorophyll integrity of microalgae may lay the groundwork for making a large variety of microalgal biorefineries, creating an important step toward achieving SDGs.

Suggested Citation

  • Toshiyuki Takahashi, 2020. "Potential of an Automated- and Image-Based Cell Counter to Accelerate Microalgal Research and Applications," Energies, MDPI, vol. 13(22), pages 1-11, November.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6019-:d:446892
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/22/6019/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/22/6019/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christien Enzing & Matthias Ploeg & Maria Barbosa & Lolke Sijtsma, 2014. "Microalgae-based products for the food and feed sector: an outlook for Europe," JRC Research Reports JRC85709, Joint Research Centre.
    2. Suganya, T. & Varman, M. & Masjuki, H.H. & Renganathan, S., 2016. "Macroalgae and microalgae as a potential source for commercial applications along with biofuels production: A biorefinery approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 909-941.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Renita, A. Annam & Lakshmi, D. Shanthana & Maheswari, P. & Saxena, Mayank & Kumar, J. Aravind & Vigneswaran, V.S., 2024. "Energy recovery and clean water remediation using antibiofouling polysaccharide coated PAN hollow fiber membrane obtained via green route synthesis," Energy, Elsevier, vol. 294(C).
    2. Lim, Juin Yau & Teng, Sin Yong & How, Bing Shen & Nam, KiJeon & Heo, SungKu & Máša, Vítězslav & Stehlík, Petr & Yoo, Chang Kyoo, 2022. "From microalgae to bioenergy: Identifying optimally integrated biorefinery pathways and harvest scheduling under uncertainties in predicted climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    3. Vladimir Heredia & Olivier Gonçalves & Luc Marchal & Jeremy Pruvost, 2021. "Producing Energy-Rich Microalgae Biomass for Liquid Biofuels: Influence of Strain Selection and Culture Conditions," Energies, MDPI, vol. 14(5), pages 1-15, February.
    4. Munir, Mamoona & Ahmad, Mushtaq & Saeed, Muhammad & Waseem, Amir & Rehan, Mohammad & Nizami, Abdul-Sattar & Zafar, Muhammad & Arshad, Muhammad & Sultana, Shazia, 2019. "Sustainable production of bioenergy from novel non-edible seed oil (Prunus cerasoides) using bimetallic impregnated montmorillonite clay catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 321-332.
    5. Kostas, Emily T. & Adams, Jessica M.M. & Ruiz, Héctor A. & Durán-Jiménez, Gabriela & Lye, Gary J., 2021. "Macroalgal biorefinery concepts for the circular bioeconomy: A review on biotechnological developments and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. Rodríguez, R. & Espada, J.J. & Moreno, J. & Vicente, G. & Bautista, L.F. & Morales, V. & Sánchez-Bayo, A. & Dufour, J., 2018. "Environmental analysis of Spirulina cultivation and biogas production using experimental and simulation approach," Renewable Energy, Elsevier, vol. 129(PB), pages 724-732.
    7. Keon Hee Kim & Eun Yeol Lee, 2017. "Environmentally-Benign Dimethyl Carbonate-Mediated Production of Chemicals and Biofuels from Renewable Bio-Oil," Energies, MDPI, vol. 10(11), pages 1-15, November.
    8. Salama, El-Sayed & Kurade, Mayur B. & Abou-Shanab, Reda A.I. & El-Dalatony, Marwa M. & Yang, Il-Seung & Min, Booki & Jeon, Byong-Hun, 2017. "Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1189-1211.
    9. Neel Patel & Bishnu Acharya & Prabir Basu, 2021. "Hydrothermal Carbonization (HTC) of Seaweed (Macroalgae) for Producing Hydrochar," Energies, MDPI, vol. 14(7), pages 1-16, March.
    10. Esakkimuthu, Sivakumar & Krishnamurthy, Venkatesan & Wang, Shuang & El-Fatah Abomohra, Abd & Shanmugam, Sabarathinam & Ramakrishnan, Sankar Ganesh & Subrmaniam, Sadhasivam & K, Swaminathan, 2019. "Simultaneous induction of biomass and lipid production in Tetradesmus obliquus BPL16 through polysorbate supplementation," Renewable Energy, Elsevier, vol. 140(C), pages 807-815.
    11. Bonassa, Gabriela & Schneider, Lara Talita & Canever, Victor Bruno & Cremonez, Paulo André & Frigo, Elisandro Pires & Dieter, Jonathan & Teleken, Joel Gustavo, 2018. "Scenarios and prospects of solid biofuel use in Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2365-2378.
    12. Chen, Chunxiang & Huang, Yuting & Qin, Songheng & Huang, Dengchang & Bu, Xiaoyan & Huang, Haozhong, 2020. "Slagging tendency estimation of aquatic microalgae and comparison with terrestrial biomass and waste," Energy, Elsevier, vol. 194(C).
    13. Marwa G. Saad & Noura S. Dosoky & Mohamed S. Zoromba & Hesham M. Shafik, 2019. "Algal Biofuels: Current Status and Key Challenges," Energies, MDPI, vol. 12(10), pages 1-22, May.
    14. Banerjee, Sanjukta & Banerjee, Srijoni & Ghosh, Ananta K. & Das, Debabrata, 2020. "Maneuvering the genetic and metabolic pathway for improving biofuel production in algae: Present status and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    15. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.
    16. Dahmen-Ben Moussa, Ines & Chtourou, Haifa & Hassairi, Ilem & Sayadi, Sami & Dhouib, Abdelhafidh, 2019. "The effect of switching environmental conditions on content and structure of lipid produced by a wild strain Picochlorum sp," Renewable Energy, Elsevier, vol. 134(C), pages 406-415.
    17. Mabhaudhi, T. & Mpandeli, S. & Madhlopa, A. & Modi, A. T. & Backeberg, G. & Nhamo, Luxon, "undated". "Southern Africa’s water-energy nexus: towards regional integration and development," Papers published in Journals (Open Access) H047590, International Water Management Institute.
    18. Mohammed M.M. Osman & Xiaohou Shao & Deling Zhao & Amir K. Basheer & Hongmei Jin & Yingpeng Zhang, 2019. "Methane Production from Alginate-Extracted and Non-Extracted Waste of Laminaria japonica : Anaerobic Mono- and Synergetic Co-Digestion Effects on Yield," Sustainability, MDPI, vol. 11(5), pages 1-17, February.
    19. Piloto-Rodríguez, Ramón & Sánchez-Borroto, Yisel & Melo-Espinosa, Eliezer Ahmed & Verhelst, Sebastian, 2017. "Assessment of diesel engine performance when fueled with biodiesel from algae and microalgae: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 833-842.
    20. Sudhakar, K. & Mamat, R. & Samykano, M. & Azmi, W.H. & Ishak, W.F.W. & Yusaf, Talal, 2018. "An overview of marine macroalgae as bioresource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 165-179.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:22:p:6019-:d:446892. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.