IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5708-d438385.html
   My bibliography  Save this article

Diesel Engine Performance, Emissions and Combustion Characteristics of Biodiesel and Its Blends Derived from Catalytic Pyrolysis of Waste Cooking Oil

Author

Listed:
  • Mohamed Mohamed

    (School of Engineering, University of South Wales, Pontypridd CF23 1DL, UK
    Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt)

  • Chee-Keong Tan

    (School of Engineering, University of South Wales, Pontypridd CF23 1DL, UK)

  • Ali Fouda

    (Department of Mechanical Power Engineering, Faculty of Engineering, Mansoura University, Mansoura 35516, Egypt)

  • Mohammed Saber Gad

    (Mechanical Engineering Department, Faculty of Engineering, Fayoum University, Fayoum 63514, Egypt)

  • Osayed Abu-Elyazeed

    (Department of Mechanical Engineering, Faculty of Engineering, Helwan University, Mataria 11795, Egypt)

  • Abdel-Fatah Hashem

    (Department of Mechanical Engineering, Faculty of Engineering, South Valley University, Qena 83523, Egypt)

Abstract

This paper first describes a slow catalytic pyrolysis process used for synthesizing biodiesel from waste cooking oil (WCO) as a feedstock. The influence of variations in the catalyst type (sodium hydroxide and potassium hydroxide), and catalyst concentration (0.5, 1.0, 3.0, 5.0, 7.0 and 10.0% by weight) on both the pyrolysis temperature range and biodiesel yield were investigated. The results suggested that sodium hydroxide (NaOH) was more effective than potassium hydroxide (KOH) as catalysts and that the highest yield (around 70 wt.%) was observed for a NaOH concentration of about 1 wt.% The resultant pyrolysis temperature range was also significantly lower for NaOH catalyst, thus suggesting overall lower energy consumption. Compared to conventional diesel, the synthesized biodiesel exhibited relatively similar physical properties and calorific value. The biodiesel was subsequently blended with diesel fuel in different blend ratios of 0, 20, 40, 60, 80 and 100% by volume of biodiesel and were later tested in a compression ignition engine. Brake thermal efficiency and specific fuel consumption were observed to be worse with biodiesel fuel blends particularly at higher engine load above 50%. However, NOx emission generally decreased with increasing blend ratio across all engine load, with greater reduction observed at higher engine load. Similar observation can also be concluded for CO emission. In contrast, lower hydrocarbon (HC) emission from the biodiesel fuel blends was only observed for blend ratios no higher than 40%. Particulate emission from the biodiesel fuel blends did not pose an issue given its comparable smoke opacity to diesel observed during the engine test. The in-cylinder peak pressures, temperature and heat release rate of biodiesel fuel blends were lower than diesel. Overall, biodiesel fuel blends exhibited shorter ignition delays when compared to diesel fuel.

Suggested Citation

  • Mohamed Mohamed & Chee-Keong Tan & Ali Fouda & Mohammed Saber Gad & Osayed Abu-Elyazeed & Abdel-Fatah Hashem, 2020. "Diesel Engine Performance, Emissions and Combustion Characteristics of Biodiesel and Its Blends Derived from Catalytic Pyrolysis of Waste Cooking Oil," Energies, MDPI, vol. 13(21), pages 1-13, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5708-:d:438385
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5708/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5708/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdelfattah, Mohammed Saleh Hamed & Abu-Elyazeed, Osayed Sayed Mohamed & Abd El mawla, Ebtsam & Abdelazeem, Marwa Ahmed, 2018. "On biodiesels from castor raw oil using catalytic pyrolysis," Energy, Elsevier, vol. 143(C), pages 950-960.
    2. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    3. Tesfa, B. & Mishra, R. & Zhang, C. & Gu, F. & Ball, A.D., 2013. "Combustion and performance characteristics of CI (compression ignition) engine running with biodiesel," Energy, Elsevier, vol. 51(C), pages 101-115.
    4. Avinash, A. & Subramaniam, D. & Murugesan, A., 2014. "Bio-diesel—A global scenario," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 517-527.
    5. Xue, Jinlin, 2013. "Combustion characteristics, engine performances and emissions of waste edible oil biodiesel in diesel engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 350-365.
    6. Suresh, M. & Jawahar, C.P. & Richard, Arun, 2018. "A review on biodiesel production, combustion, performance, and emission characteristics of non-edible oils in variable compression ratio diesel engine using biodiesel and its blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 38-49.
    7. Natacha Phetyim & Sommai Pivsa-Art, 2018. "Prototype Co-Pyrolysis of Used Lubricant Oil and Mixed Plastic Waste to Produce a Diesel-Like Fuel," Energies, MDPI, vol. 11(11), pages 1-11, November.
    8. Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
    9. Hirkude, Jagannath Balasaheb & Padalkar, Atul S., 2012. "Performance and emission analysis of a compression ignition," Applied Energy, Elsevier, vol. 90(1), pages 68-72.
    10. Muralidharan, K. & Vasudevan, D., 2011. "Performance, emission and combustion characteristics of a variable compression ratio engine using methyl esters of waste cooking oil and diesel blends," Applied Energy, Elsevier, vol. 88(11), pages 3959-3968.
    11. Muralidharan, K. & Vasudevan, D. & Sheeba, K.N., 2011. "Performance, emission and combustion characteristics of biodiesel fuelled variable compression ratio engine," Energy, Elsevier, vol. 36(8), pages 5385-5393.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. Charan Kumar & Amit Kumar Thakur & J. Ronald Aseer & Sendhil Kumar Natarajan & Rajesh Singh & Neeraj Priyadarshi & Bhekisipho Twala, 2022. "An Experimental Analysis and ANN Based Parameter Optimization of the Influence of Microalgae Spirulina Blends on CI Engine Attributes," Energies, MDPI, vol. 15(17), pages 1-19, August.
    2. Vinay Atgur & G. Manavendra & Nagaraj R. Banapurmath & Boggarapu Nageswar Rao & Ali A. Rajhi & T. M. Yunus Khan & Chandramouli Vadlamudi & Sanjay Krishnappa & Ashok M. Sajjan & R. Venkatesh, 2022. "Essence of Thermal Analysis to Assess Biodiesel Combustion Performance," Energies, MDPI, vol. 15(18), pages 1-23, September.
    3. Lisandra Rocha-Meneses & Mario Luna-delRisco & Carlos Arrieta González & Sebastián Villegas Moncada & Andrés Moreno & Jorge Sierra-Del Rio & Luis E. Castillo-Meza, 2023. "An Overview of the Socio-Economic, Technological, and Environmental Opportunities and Challenges for Renewable Energy Generation from Residual Biomass: A Case Study of Biogas Production in Colombia," Energies, MDPI, vol. 16(16), pages 1-20, August.
    4. Daniel Romeo Kamta Legue & Zacharie Merlin Ayissi & Mahamat Hassane Babikir & Marcel Obounou & Henri Paul Ekobena Fouda, 2021. "Experimental and Simulation of Diesel Engine Fueled with Biodiesel with Variations in Heat Loss Model," Energies, MDPI, vol. 14(6), pages 1-17, March.
    5. Jemima Romola, C.V. & Karl J Samuel, P.K. & Megana Harshini, M. & Ganesh Moorthy, I. & Shyam Kumar, R. & Chinnathambi, Arunachalam & Salmen, Saleh H. & Alharbi, Sulaiman Ali & Karthikumar, Sankar, 2021. "Improvement of fuel properties of used palm oil derived biodiesel with butyl ferulate as an additive," Renewable Energy, Elsevier, vol. 175(C), pages 1052-1068.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gad, M.S. & Abu-Elyazeed, O.S. & Mohamed, M.A. & Hashim, A.M., 2021. "Effect of oil blends derived from catalytic pyrolysis of waste cooking oil on diesel engine performance, emissions and combustion characteristics," Energy, Elsevier, vol. 223(C).
    2. Othman, Mohd Fahmi & Adam, Abdullah & Najafi, G. & Mamat, Rizalman, 2017. "Green fuel as alternative fuel for diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 694-709.
    3. Gonca, Guven & Dobrucali, Erinc, 2016. "Theoretical and experimental study on the performance of a diesel engine fueled with diesel–biodiesel blends," Renewable Energy, Elsevier, vol. 93(C), pages 658-666.
    4. Mahmudul, H.M. & Hagos, F.Y. & Mamat, R. & Adam, A. Abdul & Ishak, W.F.W. & Alenezi, R., 2017. "Production, characterization and performance of biodiesel as an alternative fuel in diesel engines – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 497-509.
    5. S, Prabakaran & T, Mohanraj & A, Arumugam, 2021. "Azolla pinnata methyl ester production and process optimization using a novel heterogeneous catalyst," Renewable Energy, Elsevier, vol. 180(C), pages 353-371.
    6. Oumer, A.N. & Hasan, M.M. & Baheta, Aklilu Tesfamichael & Mamat, Rizalman & Abdullah, A.A., 2018. "Bio-based liquid fuels as a source of renewable energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 82-98.
    7. Dong Lin Loo & Yew Heng Teoh & Heoy Geok How & Jun Sheng Teh & Liviu Catalin Andrei & Slađana Starčević & Farooq Sher, 2021. "Applications Characteristics of Different Biodiesel Blends in Modern Vehicles Engines: A Review," Sustainability, MDPI, vol. 13(17), pages 1-31, August.
    8. Wei, L. & Cheung, C.S. & Ning, Z., 2017. "Influence of waste cooking oil biodiesel on combustion, unregulated gaseous emissions and particulate emissions of a direct-injection diesel engine," Energy, Elsevier, vol. 127(C), pages 175-185.
    9. Abedin, M.J. & Kalam, M.A. & Masjuki, H.H. & Sabri, M.F.M. & Rahman, S.M. Ashrafur & Sanjid, A. & Fattah, I.M. Rizwanul, 2016. "Production of biodiesel from a non-edible source and study of its combustion, and emission characteristics: A comparative study with B5," Renewable Energy, Elsevier, vol. 88(C), pages 20-29.
    10. Hasan, M.M. & Rahman, M.M., 2017. "Performance and emission characteristics of biodiesel–diesel blend and environmental and economic impacts of biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 938-948.
    11. Mofijur, M. & Rasul, M.G. & Hyde, J. & Azad, A.K. & Mamat, R. & Bhuiya, M.M.K., 2016. "Role of biofuel and their binary (diesel–biodiesel) and ternary (ethanol–biodiesel–diesel) blends on internal combustion engines emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 265-278.
    12. Muruganantham Ponnusamy & Bharathwaaj Ramani & Ravishankar Sathyamruthy, 2021. "A Parametric Study on a Diesel Engine Fuelled Using Waste Cooking Oil Blended with Al 2 O 3 Nanoparticle—Performance, Emission, and Combustion Characteristics," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    13. Sakthivel, R. & Ramesh, K. & Purnachandran, R. & Mohamed Shameer, P., 2018. "A review on the properties, performance and emission aspects of the third generation biodiesels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2970-2992.
    14. D´Agosto, Márcio de Almeida & da Silva, Marcelino Aurélio Vieira & Franca, Luíza Santana & de Oliveira, Cíntia Machado & Alexandre, Manuel Oliveira Lemos & da Costa Marques, Luiz Guilherme & Murta, Au, 2017. "Comparative study of emissions from stationary engines using biodiesel made from soybean oil, palm oil and waste frying oil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1376-1392.
    15. Arumugam, S. & Sriram, G. & Ellappan, R., 2014. "Bio-lubricant-biodiesel combination of rapeseed oil: An experimental investigation on engine oil tribology, performance, and emissions of variable compression engine," Energy, Elsevier, vol. 72(C), pages 618-627.
    16. Wan Ghazali, Wan Nor Maawa & Mamat, Rizalman & Masjuki, H.H. & Najafi, Gholamhassan, 2015. "Effects of biodiesel from different feedstocks on engine performance and emissions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 585-602.
    17. Zheng, Zunqing & Wang, XiaoFeng & Zhong, Xiaofan & Hu, Bin & Liu, Haifeng & Yao, Mingfa, 2016. "Experimental study on the combustion and emissions fueling biodiesel/n-butanol, biodiesel/ethanol and biodiesel/2,5-dimethylfuran on a diesel engine," Energy, Elsevier, vol. 115(P1), pages 539-549.
    18. Teoh, Y.H. & How, H.G. & Masjuki, H.H. & Nguyen, H.-T. & Kalam, M.A. & Alabdulkarem, A., 2019. "Investigation on particulate emissions and combustion characteristics of a common-rail diesel engine fueled with Moringa oleifera biodiesel-diesel blends," Renewable Energy, Elsevier, vol. 136(C), pages 521-534.
    19. E, Jiaqiang & Pham, MinhHieu & Deng, Yuanwang & Nguyen, Tuannghia & Duy, VinhNguyen & Le, DucHieu & Zuo, Wei & Peng, Qingguo & Zhang, Zhiqing, 2018. "Effects of injection timing and injection pressure on performance and exhaust emissions of a common rail diesel engine fueled by various concentrations of fish-oil biodiesel blends," Energy, Elsevier, vol. 149(C), pages 979-989.
    20. Hoseini, S.S. & Najafi, G. & Ghobadian, B. & Mamat, Rizalman & Sidik, Nor Azwadi Che & Azmi, W.H., 2017. "The effect of combustion management on diesel engine emissions fueled with biodiesel-diesel blends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 307-331.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5708-:d:438385. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.