IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i21p5664-d436826.html
   My bibliography  Save this article

Energy Consumption and Greenhouse Gas Emissions of Nickel Products

Author

Listed:
  • Wenjing Wei

    (Department of Materials Science and Engineering, Royal Institute of Technology, 114 28 Stockholm, Sweden
    Kobolde &Partners AB, Ringvägen 100, 118 60 Stockholm, Sweden)

  • Peter B. Samuelsson

    (Department of Materials Science and Engineering, Royal Institute of Technology, 114 28 Stockholm, Sweden)

  • Anders Tilliander

    (Department of Materials Science and Engineering, Royal Institute of Technology, 114 28 Stockholm, Sweden)

  • Rutger Gyllenram

    (Department of Materials Science and Engineering, Royal Institute of Technology, 114 28 Stockholm, Sweden
    Kobolde &Partners AB, Ringvägen 100, 118 60 Stockholm, Sweden)

  • Pär G. Jönsson

    (Department of Materials Science and Engineering, Royal Institute of Technology, 114 28 Stockholm, Sweden)

Abstract

The primary energy consumption and greenhouse gas emissions from nickel smelting products have been assessed through case studies using a process model based on mass and energy balance. The required primary energy for producing nickel metal, nickel oxide, ferronickel, and nickel pig iron is 174 GJ/t alloy (174 GJ/t contained Ni), 369 GJ/t alloy (485 GJ/t contained Ni), 110 GJ/t alloy (309 GJ/t contained Ni), and 60 GJ/t alloy (598 GJ/t contained Ni), respectively. Furthermore, the associated GHG emissions are 14 tCO 2 -eq/t alloy (14 tCO 2 -eq/t contained Ni), 30 t CO 2 -eq/t alloy (40 t CO 2 -eq/t contained Ni), 6 t CO 2 -eq/t alloy (18 t CO 2 -eq/t contained Ni), and 7 t CO 2 -eq/t alloy (69 t CO 2 -eq/t contained Ni). A possible carbon emission reduction can be observed by comparing ore type, ore grade, and electricity source, as well as allocation strategy. The suggested process model overcomes the limitation of a conventional life cycle assessment study which considers the process as a ‘black box’ and allows for an identification of further possibilities to implement sustainable nickel production.

Suggested Citation

  • Wenjing Wei & Peter B. Samuelsson & Anders Tilliander & Rutger Gyllenram & Pär G. Jönsson, 2020. "Energy Consumption and Greenhouse Gas Emissions of Nickel Products," Energies, MDPI, vol. 13(21), pages 1-22, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5664-:d:436826
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/21/5664/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/21/5664/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bo P. Weidema & Jannick H. Schmidt, 2010. "Avoiding Allocation in Life Cycle Assessment Revisited," Journal of Industrial Ecology, Yale University, vol. 14(2), pages 192-195, March.
    2. Anamarija Grbeš, 2015. "A Life Cycle Assessment of Silica Sand: Comparing the Beneficiation Processes," Sustainability, MDPI, vol. 8(1), pages 1-9, December.
    3. Kirschen, Marcus & Risonarta, Victor & Pfeifer, Herbert, 2009. "Energy efficiency and the influence of gas burners to the energy related carbon dioxide emissions of electric arc furnaces in steel industry," Energy, Elsevier, vol. 34(9), pages 1065-1072.
    4. Jozef Mitterpach & Emília Hroncová & Juraj Ladomerský & Karol Balco, 2015. "Identification of Significant Impact of Silicon Foundry Sands Mining on LCIA," Sustainability, MDPI, vol. 7(12), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Datu Buyung Agusdinata & Wenjuan Liu & Sinta Sulistyo & Philippe LeBillon & Je'anne Wegner, 2023. "Evaluating sustainability impacts of critical mineral extractions: Integration of life cycle sustainability assessment and SDGs frameworks," Journal of Industrial Ecology, Yale University, vol. 27(3), pages 746-759, June.
    2. Vuong, Quan-Hoang & Nguyen, Minh-Hoang & La, Viet-Phuong, 2023. "Một số vấn đề môi trường cần lưu ý khi khai thác và tinh chế Nickel," OSF Preprints qwh3a, Center for Open Science.
    3. Wojciech Kaczan & Jan Kudełko & Herbert Wirth, 2021. "Szklary nickel deposit — a review and introduction to attempts in hydrometallurgical processing," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 34(2), pages 315-322, July.
    4. Yu, Yu & Ma, Daipeng & Qian, Yingmiao, 2023. "A resilience measure for the international nickel trade network," Resources Policy, Elsevier, vol. 86(PA).
    5. Yulia Mozzhegorova & Galina Ilinykh & Vladimir Korotaev, 2024. "Life Cycle Assessment of a Gas Turbine Installation," Energies, MDPI, vol. 17(2), pages 1-24, January.
    6. Ma, Yu & Wang, Minxi & Li, Xin, 2022. "Analysis of the characteristics and stability of the global complex nickel ore trade network," Resources Policy, Elsevier, vol. 79(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Krexner, T. & Bauer, A. & Gronauer, A. & Mikovits, C. & Schmidt, J. & Kral, I., 2024. "Environmental life cycle assessment of a stilted and vertical bifacial crop-based agrivoltaic multi land-use system and comparison with a mono land-use of agricultural land," Renewable and Sustainable Energy Reviews, Elsevier, vol. 196(C).
    2. Saade, Marcella Ruschi Mendes & Silva, Maristela Gomes da & Gomes, Vanessa, 2015. "Appropriateness of environmental impact distribution methods to model blast furnace slag recycling in cement making," Resources, Conservation & Recycling, Elsevier, vol. 99(C), pages 40-47.
    3. Jie Yang & Shaowen Lu & Liangyong Wang, 2020. "Fused magnesia manufacturing process: a survey," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 327-350, February.
    4. Iost, Susanne & Geng, Natalia & Schweinle, Jörg & Banse, Martin & Brüning, Simone & Jochem, Dominik & Machmüller, Andrea & Weimar, Holger, 2020. "Setting up a bioeconomy monitoring: Resource base and sustainability," Thünen Working Paper 305677, Johann Heinrich von Thünen-Institut (vTI), Federal Research Institute for Rural Areas, Forestry and Fisheries.
    5. Iost, Susanne & Geng, Natalia & Schweinle, Jörg & Banse, Martin & Brüning, Simone & Jochem, Dominik & Machmüller, Andrea & Weimar, Holger, 2020. "Setting up a bioeconomy monitoring: Resource base and sustainability," Thünen Working Papers 149, Johann Heinrich von Thünen Institute, Federal Research Institute for Rural Areas, Forestry and Fisheries.
    6. Nardin, Gioacchino & Meneghetti, Antonella & Dal Magro, Fabio & Benedetti, Nicole, 2014. "PCM-based energy recovery from electric arc furnaces," Applied Energy, Elsevier, vol. 136(C), pages 947-955.
    7. Chen, Zhengjie & Ma, Wenhui & Wu, Jijun & Wei, Kuixian & Yang, Xi & Lv, Guoqiang & Xie, Keqiang & Yu, Jie, 2016. "Influence of carbothermic reduction on submerged arc furnace energy efficiency during silicon production," Energy, Elsevier, vol. 116(P1), pages 687-693.
    8. Arens, M. & Worrell, E., 2014. "Diffusion of energy efficient technologies in the German steel industry and their impact on energy consumption," Energy, Elsevier, vol. 73(C), pages 968-977.
    9. Cui, Qiang & Kuang, Hai-bo & Wu, Chun-you & Li, Ye, 2014. "The changing trend and influencing factors of energy efficiency: The case of nine countries," Energy, Elsevier, vol. 64(C), pages 1026-1034.
    10. Manojlović, Vaso & Kamberović, Željko & Korać, Marija & Dotlić, Milan, 2022. "Machine learning analysis of electric arc furnace process for the evaluation of energy efficiency parameters," Applied Energy, Elsevier, vol. 307(C).
    11. Thomas Schaubroeck & Simon Schaubroeck & Reinout Heijungs & Alessandra Zamagni & Miguel Brandão & Enrico Benetto, 2021. "Attributional & Consequential Life Cycle Assessment: Definitions, Conceptual Characteristics and Modelling Restrictions," Sustainability, MDPI, vol. 13(13), pages 1-47, July.
    12. Seongjun Kim & Sung-Ah Kim, 2020. "Framework for Designing Sustainable Structures through Steel Beam Reuse," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
    13. Cui, Chengtian & Qi, Meng & Zhang, Xiaodong & Sun, Jinsheng & Li, Qing & Kiss, Anton A. & Wong, David Shan-Hill & Masuku, Cornelius M. & Lee, Moonyong, 2024. "Electrification of distillation for decarbonization: An overview and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    14. Zhang, Xuan-Kai & He, Ya-Ling & Li, Meng-Jie & Hu, Xin, 2022. "The study of heat-mass transfer characteristics and multi-objective optimization on electric arc furnace," Applied Energy, Elsevier, vol. 317(C).
    15. Zuoxi Liu & Huijuan Dong & Yong Geng & Chengpeng Lu & Wanxia Ren, 2014. "Insights into the Regional Greenhouse Gas (GHG) Emission of Industrial Processes: A Case Study of Shenyang, China," Sustainability, MDPI, vol. 6(6), pages 1-17, June.
    16. Barati, Mansoor, 2010. "Energy intensity and greenhouse gases footprint of metallurgical processes: A continuous steelmaking case study," Energy, Elsevier, vol. 35(9), pages 3731-3737.
    17. Christian Dierks & Tabea Hagedorn & Alessio Campitelli & Winfried Bulach & Vanessa Zeller, 2021. "Are LCA Studies on Bulk Mineral Waste Management Suitable for Decision Support? A Critical Review," Sustainability, MDPI, vol. 13(9), pages 1-27, April.
    18. Gajic, Dragoljub & Savic-Gajic, Ivana & Savic, Ivan & Georgieva, Olga & Di Gennaro, Stefano, 2016. "Modelling of electrical energy consumption in an electric arc furnace using artificial neural networks," Energy, Elsevier, vol. 108(C), pages 132-139.
    19. Dal Magro, Fabio & Savino, Stefano & Meneghetti, Antonella & Nardin, Gioacchino, 2017. "Coupling waste heat extraction by phase change materials with superheated steam generation in the steel industry," Energy, Elsevier, vol. 137(C), pages 1107-1118.
    20. Son, Hyunsoo & Kim, Miae & Kim, Jin-Kuk, 2022. "Sustainable process integration of electrification technologies with industrial energy systems," Energy, Elsevier, vol. 239(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:21:p:5664-:d:436826. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.