IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p377-d1018595.html
   My bibliography  Save this article

Air/Water Heat Pumps in Existing Heating and Hot Water Systems for Better Urban Air Quality and Primary Energy Savings: Scenarios of Two Italian Cities

Author

Listed:
  • Alberta Carella

    (Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

  • Luca Del Ferraro

    (Daikin Applied Europe S.p.A., Via Piani di S. Maria 72, 00072 Ariccia, Italy)

  • Annunziata D’Orazio

    (Dipartimento di Ingegneria Astronautica, Elettrica ed Energetica, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy)

Abstract

In a previous work, a significant contribution to urban air pollution, related to fuel-fired heating systems, was recorded. Thus, the replacement of existing boilers for space heating and domestic hot water (DHW) production systems with high-temperature air/water heat pumps (which can operate with radiators, the most common terminals in the existing building stock), is proposed for the improvement of the urban air quality. Scenarios of substitution within the entire residential building stock of two Italian cities, Milan and Salerno, belonging to different climate zones and with their own thermophysical characteristics, were analyzed. For each of them, the consequences of the replacement intervention on emission reduction, primary energy savings and lower CO 2 production were evaluated. The results show that reduction of primary energy consumption, evaluated at design outdoor temperature and for the present generation mix, varied between 34% and 54% in Milan and between 43% and 60% in Salerno, for two values of renewable fraction in electricity generation. The reduction of CO 2 production was in the range 30–52% in Milan and 39–58% in Salerno, respectively. The only unfavorable case occurred for Milan for a completely non-renewable electricity generation scenario. The replacement intervention, which implies a significant decrease of emissions of pollutants in urban areas, is unobtrusive to citizens, since the heat pumps (HPs) are coupled with current radiators, without the internal distribution system being modified.

Suggested Citation

  • Alberta Carella & Luca Del Ferraro & Annunziata D’Orazio, 2022. "Air/Water Heat Pumps in Existing Heating and Hot Water Systems for Better Urban Air Quality and Primary Energy Savings: Scenarios of Two Italian Cities," Energies, MDPI, vol. 16(1), pages 1-15, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:377-:d:1018595
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/377/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/377/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sławomir Zator & Waldemar Skomudek, 2020. "Impact of DSM on Energy Management in a Single-Family House with a Heat Pump and Photovoltaic Installation," Energies, MDPI, vol. 13(20), pages 1-20, October.
    2. Piotr Jadwiszczak & Jakub Jurasz & Bartosz Kaźmierczak & Elżbieta Niemierka & Wandong Zheng, 2021. "Factors Shaping A/W Heat Pumps CO₂ Emissions—Evidence from Poland," Energies, MDPI, vol. 14(6), pages 1-13, March.
    3. Borge-Diez, David & Icaza, Daniel & Trujillo-Cueva, Diego Francisco & Açıkkalp, Emin, 2022. "Renewable energy driven heat pumps decarbonization potential in existing residential buildings: Roadmap and case study of Spain," Energy, Elsevier, vol. 247(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Zhang, Hongji & Ding, Tao & Sun, Yuge & Huang, Yuhan & He, Yuankang & Huang, Can & Li, Fangxing & Xue, Chen & Sun, Xiaoqiang, 2023. "How does load-side re-electrification help carbon neutrality in energy systems: Cost competitiveness analysis and life-cycle deduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    3. Paula Sankelo & Kaiser Ahmed & Alo Mikola & Jarek Kurnitski, 2022. "Renovation Results of Finnish Single-Family Renovation Subsidies: Oil Boiler Replacement with Heat Pumps," Energies, MDPI, vol. 15(20), pages 1-18, October.
    4. Wu, Wei & Xu, Meiqi & Su, Ruiqian & Ullah, Kaleem, 2024. "Modeling crude oil volatility using economic sentiment analysis and opinion mining of investors via deep learning and machine learning models," Energy, Elsevier, vol. 289(C).
    5. Justyna Smagowicz & Cezary Szwed & Dawid Dąbal & Pavel Scholz, 2022. "A Simulation Model of Power Demand Management by Manufacturing Enterprises under the Conditions of Energy Sector Transformation," Energies, MDPI, vol. 15(9), pages 1-27, April.
    6. Lizana, Jesus & Halloran, Claire E. & Wheeler, Scot & Amghar, Nabil & Renaldi, Renaldi & Killendahl, Markus & Perez-Maqueda, Luis A. & McCulloch, Malcolm & Chacartegui, Ricardo, 2023. "A national data-based energy modelling to identify optimal heat storage capacity to support heating electrification," Energy, Elsevier, vol. 262(PA).
    7. Piotr Ciuman & Jan Kaczmarczyk & Małgorzata Jastrzębska, 2022. "Simulation Analysis of Heat Pumps Application for the Purposes of the Silesian Botanical Garden Facilities in Poland," Energies, MDPI, vol. 16(1), pages 1-19, December.
    8. Zhang, Yongyu & Gao, Ran & Si, Pengfei & Shi, Lijun & Shang, Yinghui & Wang, Yi & Liu, Boran & Du, Xueqing & Zhao, Kejie & Li, Angui, 2023. "Study on performances of heat-oxygen coupling device for high-altitude environments," Energy, Elsevier, vol. 272(C).
    9. Sławomir Zator, 2021. "Power Scheduling Scheme for DSM in Smart Homes with Photovoltaic and Energy Storage," Energies, MDPI, vol. 14(24), pages 1-20, December.
    10. Yuanping Wang & Weiguang Cai & Lingchun Hou & Zhaoyin Zhou & Jing Bian, 2022. "Examining the Provincial-Level Difference and Impact Factors of Urban Household Electricity Consumption in China—Based on the Extended STIRPAT Model," Sustainability, MDPI, vol. 14(16), pages 1-18, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:377-:d:1018595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.