IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5401-d429024.html
   My bibliography  Save this article

Investigation of Steam Treatment on the Sorption Behavior of Rice Straw Pellets

Author

Listed:
  • Xiao He

    (Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Lianjun Wang

    (Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China)

  • Anthony Lau

    (Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC V6T 1Z3, Canada)

Abstract

Agricultural residue is a readily available biomass source for making biofuels. However, complex structure along with low calorific value makes it reluctant to be utilized. This necessitates the pretreatment of biomass to improve its accessibility. In this study, rice straws were treated with saturated steam at 180–200 °C for 5–10 min and pelletized. Results indicated that the pretreatment process could effectively improve the calorific values and enhance the hydrophobicity of the rice straws. The steam explosion process changed the content of chemical components in the biomass materials. With the increase of reaction temperature and retention time, the content of cellulose, hemicelluloses and lignin declined. Comparedwith the raw materials, there was an increase in the calorific value from 16.24 MJ/kg to 17.26 MJ/kg for the steam treated straws. For moisture sorption test under the condition of 30 °C and 90% relative humidity, the equilibrium moisture content dropped from 21% for untreated straw pellets to 14.2% for the steam treated straw pellets treated at 200 °C for 10 min. Moisture adsorption rate reduced along with the increase in steam temperature and retention time. This study demonstrated that steam explosion performed an effective way to improve the characteristics of agricultural residues.

Suggested Citation

  • Xiao He & Lianjun Wang & Anthony Lau, 2020. "Investigation of Steam Treatment on the Sorption Behavior of Rice Straw Pellets," Energies, MDPI, vol. 13(20), pages 1-9, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5401-:d:429024
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5401/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5401/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu, Qiong & Liu, Ronghou & Li, Kun & Ma, Ruijie, 2019. "A review of crop straw pretreatment methods for biogas production by anaerobic digestion in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 51-58.
    2. Sarkar, Nibedita & Ghosh, Sumanta Kumar & Bannerjee, Satarupa & Aikat, Kaustav, 2012. "Bioethanol production from agricultural wastes: An overview," Renewable Energy, Elsevier, vol. 37(1), pages 19-27.
    3. Bhutto, Abdul Waheed & Qureshi, Khadija & Harijan, Khanji & Abro, Rashid & Abbas, Tauqeer & Bazmi, Aqeel Ahmed & Karim, Sadia & Yu, Guangren, 2017. "Insight into progress in pre-treatment of lignocellulosic biomass," Energy, Elsevier, vol. 122(C), pages 724-745.
    4. Tooyserkani, Zahra & Sokhansanj, Shahab & Bi, Xiaotao & Lim, Jim & Lau, Anthony & Saddler, Jack & Kumar, Linoj & Lam, Pak Sui & Melin, Staffan, 2013. "Steam treatment of four softwood species and bark to produce torrefied wood," Applied Energy, Elsevier, vol. 103(C), pages 514-521.
    5. Cai, Junmeng & He, Yifeng & Yu, Xi & Banks, Scott W. & Yang, Yang & Zhang, Xingguang & Yu, Yang & Liu, Ronghou & Bridgwater, Anthony V., 2017. "Review of physicochemical properties and analytical characterization of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 309-322.
    6. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    7. Manochio, C. & Andrade, B.R. & Rodriguez, R.P. & Moraes, B.S., 2017. "Ethanol from biomass: A comparative overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 743-755.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peyman Alizadeh & Tim Dumonceaux & Lope G. Tabil & Edmund Mupondwa & Majid Soleimani & Duncan Cree, 2022. "Steam Explosion Pre-Treatment of Sawdust for Biofuel Pellets," Clean Technol., MDPI, vol. 4(4), pages 1-18, November.
    2. Chukwuka Onyenwoke & Lope G. Tabil & Tim Dumonceaux & Duncan Cree & Edmund Mupondwa & Phani Adapa & Chithra Karunakaran, 2022. "Investigation of Steam Explosion Pretreatment of Sawdust and Oat Straw to Improve Their Quality as Biofuel Pellets," Energies, MDPI, vol. 15(19), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    2. Bañuelos, Jennifer A. & Velázquez-Hernández, I. & Guerra-Balcázar, M. & Arjona, N., 2018. "Production, characterization and evaluation of the energetic capability of bioethanol from Salicornia Bigelovii as a renewable energy source," Renewable Energy, Elsevier, vol. 123(C), pages 125-134.
    3. Karami, Kavosh & Karimi, Keikhosro & Mirmohamadsadeghi, Safoora & Kumar, Rajeev, 2022. "Mesophilic aerobic digestion: An efficient and inexpensive biological pretreatment to improve biogas production from highly-recalcitrant pinewood," Energy, Elsevier, vol. 239(PE).
    4. Sahu, Omprakash, 2021. "Appropriateness of rose (Rosa hybrida) for bioethanol conversion with enzymatic hydrolysis: Sustainable development on green fuel production," Energy, Elsevier, vol. 232(C).
    5. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    6. Rita H. R. Branco & Mariana S. T. Amândio & Luísa S. Serafim & Ana M. R. B. Xavier, 2020. "Ethanol Production from Hydrolyzed Kraft Pulp by Mono- and Co-Cultures of Yeasts: The Challenge of C6 and C5 Sugars Consumption," Energies, MDPI, vol. 13(3), pages 1-15, February.
    7. Jain, Sanyam & Kumar, Shushil, 2024. "A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives," Energy, Elsevier, vol. 296(C).
    8. Sunčica Beluhan & Katarina Mihajlovski & Božidar Šantek & Mirela Ivančić Šantek, 2023. "The Production of Bioethanol from Lignocellulosic Biomass: Pretreatment Methods, Fermentation, and Downstream Processing," Energies, MDPI, vol. 16(19), pages 1-38, October.
    9. H K, Narendra Kumar & N, Chandra Mohana & H C, Amrutha & D, Rakshith & B P, Harini & Satish, S., 2023. "Biomass conversion through optimization of cellulase from Chryseobacterium junjuense Bp17 and their utility in bioethanol production," Energy, Elsevier, vol. 283(C).
    10. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Awad, Faisal N. & Qi, Xianghui & Sahu, J.N., 2019. "Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 105-128.
    11. Singh, Satyansh & Chakraborty, Jyoti Prasad & Mondal, Monoj Kumar, 2020. "Torrefaction of woody biomass (Acacia nilotica): Investigation of fuel and flow properties to study its suitability as a good quality solid fuel," Renewable Energy, Elsevier, vol. 153(C), pages 711-724.
    12. Melendez, Jesus R. & Mátyás, Bence & Hena, Sufia & Lowy, Daniel A. & El Salous, Ahmed, 2022. "Perspectives in the production of bioethanol: A review of sustainable methods, technologies, and bioprocesses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    13. Shokrollahi, Simin & Denayer, Joeri F.M. & Karimi, Keikhosro, 2023. "Efficient bioenergy recovery from different date palm industrial wastes," Energy, Elsevier, vol. 272(C).
    14. Osman, Ahmed I. & Qasim, Umair & Jamil, Farrukh & Al-Muhtaseb, Ala'a H. & Jrai, Ahmad Abu & Al-Riyami, Mohammed & Al-Maawali, Suhaib & Al-Haj, Lamya & Al-Hinai, Amer & Al-Abri, Mohammed & Inayat, Abra, 2021. "Bioethanol and biodiesel: Bibliometric mapping, policies and future needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    15. Chen, Wei-Hsin & Lin, Bo-Jhih & Colin, Baptiste & Chang, Jo-Shu & Pétrissans, Anélie & Bi, Xiaotao & Pétrissans, Mathieu, 2018. "Hygroscopic transformation of woody biomass torrefaction for carbon storage," Applied Energy, Elsevier, vol. 231(C), pages 768-776.
    16. Ullah, Kifayat & Sharma, Vinod Kumar & Ahmad, Mushtaq & Lv, Pengmei & Krahl, Jurgen & Wang, Zhongming & Sofia,, 2018. "The insight views of advanced technologies and its application in bio-origin fuel synthesis from lignocellulose biomasses waste, a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3992-4008.
    17. Bayrakci, Asiye Gül & Koçar, Günnur, 2014. "Second-generation bioethanol production from water hyacinth and duckweed in Izmir: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 306-316.
    18. Tian, Wenjing & Li, Jianhao & Zhu, Lirong & Li, Wen & He, Linyan & Gu, Li & Deng, Rui & Shi, Dezhi & Chai, Hongxiang & Gao, Meng, 2021. "Insights of enhancing methane production under high-solid anaerobic digestion of wheat straw by calcium peroxide pretreatment and zero valent iron addition," Renewable Energy, Elsevier, vol. 177(C), pages 1321-1332.
    19. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    20. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5401-:d:429024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.