IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i20p5332-d427305.html
   My bibliography  Save this article

Impact of Passive Cooling on Thermal Comfort in a Single-Family Building for Current and Future Climate Conditions

Author

Listed:
  • Krzysztof Grygierek

    (Faculty of Civil Engineering, Silesian University of Technology, Akademicka 5, 44-100 Gliwice, Poland)

  • Izabela Sarna

    (Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 20, 44-100 Gliwice, Poland)

Abstract

Today, there is a great deal of emphasis on reducing energy use in buildings for both economic and environmental reasons. Investors strongly encourage the insulating of buildings. Buildings without cooling systems can lead to a deterioration in thermal comfort, even in transitional climate areas. In this article, the effectiveness of natural ventilation in a passive cooling building is analyzed. Two options are considered: cooling with external air supplied to the building by fans, or by opening windows (automatically or by residents). In both cases, fuzzy controllers for the cooling time and supply airflow control are proposed and optimized. The analysis refers to a typical Polish single-family building. Simulations are made with the use of the EnergyPlus program, and the model is validated based on indoor temperature measurement. The calculations were carried out for different climate data: standard and future (warmed) weather data. Research has shown that cooling with external air can effectively improve thermal comfort with a slight increase in heating demand. However, to be able to reach the potential of such a solution, fans should be used.

Suggested Citation

  • Krzysztof Grygierek & Izabela Sarna, 2020. "Impact of Passive Cooling on Thermal Comfort in a Single-Family Building for Current and Future Climate Conditions," Energies, MDPI, vol. 13(20), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5332-:d:427305
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/20/5332/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/20/5332/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jentsch, Mark F. & James, Patrick A.B. & Bourikas, Leonidas & Bahaj, AbuBakr S., 2013. "Transforming existing weather data for worldwide locations to enable energy and building performance simulation under future climates," Renewable Energy, Elsevier, vol. 55(C), pages 514-524.
    2. Rocío Escandón & Rafael Suárez & Juan José Sendra & Fabrizio Ascione & Nicola Bianco & Gerardo Maria Mauro, 2019. "Predicting the Impact of Climate Change on Thermal Comfort in A Building Category: The Case of Linear-type Social Housing Stock in Southern Spain," Energies, MDPI, vol. 12(12), pages 1-21, June.
    3. Heracleous, Chryso & Michael, Aimilios, 2018. "Assessment of overheating risk and the impact of natural ventilation in educational buildings of Southern Europe under current and future climatic conditions," Energy, Elsevier, vol. 165(PB), pages 1228-1239.
    4. Krzysztof Grygierek & Joanna Ferdyn-Grygierek & Anna Gumińska & Łukasz Baran & Magdalena Barwa & Kamila Czerw & Paulina Gowik & Klaudia Makselan & Klaudia Potyka & Agnes Psikuta, 2020. "Energy and Environmental Analysis of Single-Family Houses Located in Poland," Energies, MDPI, vol. 13(11), pages 1-25, May.
    5. Joanna Ferdyn-Grygierek & Andrzej Baranowski & Monika Blaszczok & Jan Kaczmarczyk, 2019. "Thermal Diagnostics of Natural Ventilation in Buildings: An Integrated Approach," Energies, MDPI, vol. 12(23), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liyanage, Don Rukmal & Hewage, Kasun & Hussain, Syed Asad & Razi, Faran & Sadiq, Rehan, 2024. "Climate adaptation of existing buildings: A critical review on planning energy retrofit strategies for future climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Seyedeh Farzaneh Mousavi Motlagh & Ali Sohani & Mohammad Djavad Saghafi & Hoseyn Sayyaadi & Benedetto Nastasi, 2021. "The Road to Developing Economically Feasible Plans for Green, Comfortable and Energy Efficient Buildings," Energies, MDPI, vol. 14(3), pages 1-30, January.
    3. Krzysztof Grygierek & Seyedkeivan Nateghi & Joanna Ferdyn-Grygierek & Jan Kaczmarczyk, 2023. "Controlling and Limiting Infection Risk, Thermal Discomfort, and Low Indoor Air Quality in a Classroom through Natural Ventilation Controlled by Smart Windows," Energies, MDPI, vol. 16(2), pages 1-21, January.
    4. Krzysztof Grygierek & Joanna Ferdyn-Grygierek, 2022. "Design of Ventilation Systems in a Single-Family House in Terms of Heating Demand and Indoor Environment Quality," Energies, MDPI, vol. 15(22), pages 1-18, November.
    5. Chiemi Iba & Shuichi Hokoi, 2022. "Traditional Town Houses in Kyoto, Japan: Present and Future," Energies, MDPI, vol. 15(5), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamed Yassaghi & Simi Hoque, 2021. "Impact Assessment in the Process of Propagating Climate Change Uncertainties into Building Energy Use," Energies, MDPI, vol. 14(2), pages 1-27, January.
    2. Francesco Fiorito & Giandomenico Vurro & Francesco Carlucci & Ludovica Maria Campagna & Mariella De Fino & Salvatore Carlucci & Fabio Fatiguso, 2022. "Adaptation of Users to Future Climate Conditions in Naturally Ventilated Historic Buildings: Effects on Indoor Comfort," Energies, MDPI, vol. 15(14), pages 1-21, July.
    3. Joanna Ferdyn-Grygierek & Krzysztof Grygierek & Anna Gumińska & Piotr Krawiec & Adrianna Oćwieja & Robert Poloczek & Julia Szkarłat & Aleksandra Zawartka & Daria Zobczyńska & Daria Żukowska-Tejsen, 2021. "Passive Cooling Solutions to Improve Thermal Comfort in Polish Dwellings," Energies, MDPI, vol. 14(12), pages 1-15, June.
    4. S. Soutullo & E. Giancola & M. J. Jiménez & J. A. Ferrer & M. N. Sánchez, 2020. "How Climate Trends Impact on the Thermal Performance of a Typical Residential Building in Madrid," Energies, MDPI, vol. 13(1), pages 1-21, January.
    5. Bell, N.O. & Bilbao, J.I. & Kay, M. & Sproul, A.B., 2022. "Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    6. Moazami, Amin & Nik, Vahid M. & Carlucci, Salvatore & Geving, Stig, 2019. "Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions," Applied Energy, Elsevier, vol. 238(C), pages 696-720.
    7. Piotr Ciuman & Jan Kaczmarczyk, 2021. "Numerical Analysis of the Energy Consumption of Ventilation Processes in the School Swimming Pool," Energies, MDPI, vol. 14(4), pages 1-18, February.
    8. Sara Brito-Coimbra & Daniel Aelenei & Maria Gloria Gomes & Antonio Moret Rodrigues, 2021. "Building Façade Retrofit with Solar Passive Technologies: A Literature Review," Energies, MDPI, vol. 14(6), pages 1-18, March.
    9. Pajek, Luka & Košir, Mitja, 2021. "Strategy for achieving long-term energy efficiency of European single-family buildings through passive climate adaptation," Applied Energy, Elsevier, vol. 297(C).
    10. Abdrahman Alsabry & Krzysztof Szymański & Bartosz Michalak, 2023. "Energy, Economic and Environmental Analysis of Alternative, High-Efficiency Sources of Heat and Energy for Multi-Family Residential Buildings in Order to Increase Energy Efficiency in Poland," Energies, MDPI, vol. 16(6), pages 1-20, March.
    11. Eva Lucas Segarra & Germán Ramos Ruiz & Vicente Gutiérrez González & Antonis Peppas & Carlos Fernández Bandera, 2020. "Impact Assessment for Building Energy Models Using Observed vs. Third-Party Weather Data Sets," Sustainability, MDPI, vol. 12(17), pages 1-27, August.
    12. Bartosz Radomski & Tomasz Mróz, 2021. "The Methodology for Designing Residential Buildings with a Positive Energy Balance—Case Study," Energies, MDPI, vol. 14(16), pages 1-19, August.
    13. Baglivo, Cristina & Congedo, Paolo Maria & Murrone, Graziano & Lezzi, Dalila, 2022. "Long-term predictive energy analysis of a high-performance building in a mediterranean climate under climate change," Energy, Elsevier, vol. 238(PA).
    14. Ji Hyun Lim & Geun Young Yun, 2017. "Cooling Energy Implications of Occupant Factor in Buildings under Climate Change," Sustainability, MDPI, vol. 9(11), pages 1-12, November.
    15. Alaia Sola & Cristina Corchero & Jaume Salom & Manel Sanmarti, 2018. "Simulation Tools to Build Urban-Scale Energy Models: A Review," Energies, MDPI, vol. 11(12), pages 1-24, November.
    16. Bartosz Radomski & Tomasz Mróz, 2021. "The Methodology for Designing Residential Buildings with a Positive Energy Balance—General Approach," Energies, MDPI, vol. 14(15), pages 1-16, August.
    17. Ahmet Bircan Atmaca & Gülay Zorer Gedik & Andreas Wagner, 2021. "Determination of Optimum Envelope of Religious Buildings in Terms of Thermal Comfort and Energy Consumption: Mosque Cases," Energies, MDPI, vol. 14(20), pages 1-17, October.
    18. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2020. "Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland," Energies, MDPI, vol. 14(1), pages 1-21, December.
    19. Naga Venkata Sai Kumar Manapragada & Anoop Kumar Shukla & Gloria Pignatta & Komali Yenneti & Deepika Shetty & Bibhu Kalyan Nayak & Venkataramana Boorla, 2022. "Development of the Indian Future Weather File Generator Based on Representative Concentration Pathways," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    20. Binju P Raj & Chandan Swaroop Meena & Nehul Agarwal & Lohit Saini & Shabir Hussain Khahro & Umashankar Subramaniam & Aritra Ghosh, 2021. "A Review on Numerical Approach to Achieve Building Energy Efficiency for Energy, Economy and Environment (3E) Benefit," Energies, MDPI, vol. 14(15), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:20:p:5332-:d:427305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.