IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2673-d1095657.html
   My bibliography  Save this article

Energy, Economic and Environmental Analysis of Alternative, High-Efficiency Sources of Heat and Energy for Multi-Family Residential Buildings in Order to Increase Energy Efficiency in Poland

Author

Listed:
  • Abdrahman Alsabry

    (Faculty of Civil Engineering, Architecture and Environmental Engineering, Institute of Civil Engineering, University of Zielona Góra, 1 Prof. Z. Szafrana Str., 65-516 Zielona Góra, Poland)

  • Krzysztof Szymański

    (Lower Silesian Energy and Environment Agency, 11 Pełczyńska Str., 51-180 Wrocław, Poland)

  • Bartosz Michalak

    (Faculty of Civil Engineering, Architecture and Environmental Engineering, Institute of Civil Engineering, University of Zielona Góra, 1 Prof. Z. Szafrana Str., 65-516 Zielona Góra, Poland)

Abstract

The article presents energy, economic and environmental analyses of the possibilities of using alternative, high-efficiency sources of heat and energy for the multi-family residential building located in Wrocław, Poland, in the temperate climate zone characteristic of Central Europe. For conventional, alternative and hybrid heating systems based on renewable energy sources, comparative analyses of final energy demand, demand for non-renewable primary energy, CO 2 emissions, investment costs and life cycle costs were carried out. The detailed comparative analyses of the research results led to the formulation of conclusions and recommendations which may serve as guidelines for designers of multi-family residential buildings and investors. The solutions of heating and hot water preparation systems recommended in the article will enable the design and construction of buildings with no negative impact on the environment. Taking into account the economic and environmental analyses, the optimal sources of heat and energy are alternative heating systems based on highly efficient heat pumps supplied from a photovoltaic installation. Such solutions, however, have both technical and legal limitations related to the possibility of their implementation and are generally associated with higher investment costs.

Suggested Citation

  • Abdrahman Alsabry & Krzysztof Szymański & Bartosz Michalak, 2023. "Energy, Economic and Environmental Analysis of Alternative, High-Efficiency Sources of Heat and Energy for Multi-Family Residential Buildings in Order to Increase Energy Efficiency in Poland," Energies, MDPI, vol. 16(6), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2673-:d:1095657
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2673/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2673/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Xian & Lin, Alexander & Young, Chin-Huai & Dai, Yanjun & Wang, Chi-Hwa, 2019. "Energetic and economic evaluation of hybrid solar energy systems in a residential net-zero energy building," Applied Energy, Elsevier, vol. 254(C).
    2. Tori, Felipe & Bustamante, Waldo & Vera, Sergio, 2022. "Analysis of Net Zero Energy Buildings public policies at the residential building sector: A comparison between Chile and selected countries," Energy Policy, Elsevier, vol. 161(C).
    3. Omer Kaynakli, 2011. "Parametric Investigation of Optimum Thermal Insulation Thickness for External Walls," Energies, MDPI, vol. 4(6), pages 1-15, June.
    4. Atmaca, Adem & Atmaca, Nihat, 2016. "Comparative life cycle energy and cost analysis of post-disaster temporary housings," Applied Energy, Elsevier, vol. 171(C), pages 429-443.
    5. Krzysztof Grygierek & Joanna Ferdyn-Grygierek & Anna Gumińska & Łukasz Baran & Magdalena Barwa & Kamila Czerw & Paulina Gowik & Klaudia Makselan & Klaudia Potyka & Agnes Psikuta, 2020. "Energy and Environmental Analysis of Single-Family Houses Located in Poland," Energies, MDPI, vol. 13(11), pages 1-25, May.
    6. Acinia Nindartin & Hee-Woon Moon & Sang-Jun Park & Kyung-Tae Lee & Jin-Bin Im & Ju-Hyung Kim, 2022. "Influencing of the Building Energy Policies upon the Efficiency of Energy Consumption: The Case of Courthouse Buildings in South Korea," Energies, MDPI, vol. 15(18), pages 1-17, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jincan Zeng & Xiaoyu Liu & Minwei Liu & Xi Liu & Guori Huang & Shangheng Yao & Gengsheng He & Nan Shang & Fuqiang Guo & Peng Wang, 2024. "Techno-Economic Analysis of Hydrogen as a Storage Solution in an Integrated Energy System for an Industrial Area in China," Energies, MDPI, vol. 17(13), pages 1-20, June.
    2. Abdrahman Alsabry & Krzysztof Szymański, 2023. "Energy Analyses of Multi-Family Residential Buildings in Various Locations in Poland and Their Impact on the Number of Heating Degree Days," Energies, MDPI, vol. 16(12), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdrahman Alsabry & Krzysztof Szymański & Beata Backiel-Brzozowska, 2024. "Analysis of the Energy, Environmental and Economic Efficiency of Multi-Family Residential Buildings in Poland," Energies, MDPI, vol. 17(9), pages 1-32, April.
    2. Elżbieta Jadwiga Szymańska & Maria Kubacka & Joanna Woźniak & Jan Polaszczyk, 2022. "Analysis of Residential Buildings in Poland for Potential Energy Renovation toward Zero-Emission Construction," Energies, MDPI, vol. 15(24), pages 1-24, December.
    3. Abdrahman Alsabry & Krzysztof Szymański, 2023. "Energy Analyses of Multi-Family Residential Buildings in Various Locations in Poland and Their Impact on the Number of Heating Degree Days," Energies, MDPI, vol. 16(12), pages 1-17, June.
    4. Krzysztof Grygierek & Joanna Ferdyn-Grygierek & Anna Gumińska & Łukasz Baran & Magdalena Barwa & Kamila Czerw & Paulina Gowik & Klaudia Makselan & Klaudia Potyka & Agnes Psikuta, 2020. "Energy and Environmental Analysis of Single-Family Houses Located in Poland," Energies, MDPI, vol. 13(11), pages 1-25, May.
    5. Piotr Ciuman & Jan Kaczmarczyk, 2021. "Numerical Analysis of the Energy Consumption of Ventilation Processes in the School Swimming Pool," Energies, MDPI, vol. 14(4), pages 1-18, February.
    6. Filippo Antoniolli, Andrigo & Naspolini, Helena Flávia & de Abreu, João Frederico & Rüther, Ricardo, 2022. "The role and benefits of residential rooftop photovoltaic prosumers in Brazil," Renewable Energy, Elsevier, vol. 187(C), pages 204-222.
    7. Santika, Wayan G. & Anisuzzaman, M. & Simsek, Yeliz & Bahri, Parisa A. & Shafiullah, G.M. & Urmee, Tania, 2020. "Implications of the Sustainable Development Goals on national energy demand: The case of Indonesia," Energy, Elsevier, vol. 196(C).
    8. Bartosz Radomski & Tomasz Mróz, 2021. "The Methodology for Designing Residential Buildings with a Positive Energy Balance—Case Study," Energies, MDPI, vol. 14(16), pages 1-19, August.
    9. Miguel Chen Austin & Katherine Chung-Camargo & Dafni Mora, 2021. "Review of Zero Energy Building Concept-Definition and Developments in Latin America: A Framework Definition for Application in Panama," Energies, MDPI, vol. 14(18), pages 1-30, September.
    10. Bartosz Radomski & Tomasz Mróz, 2021. "The Methodology for Designing Residential Buildings with a Positive Energy Balance—General Approach," Energies, MDPI, vol. 14(15), pages 1-16, August.
    11. Marcin Bukowski & Janusz Majewski & Agnieszka Sobolewska, 2020. "Macroeconomic Electric Energy Production Efficiency of Photovoltaic Panels in Single-Family Homes in Poland," Energies, MDPI, vol. 14(1), pages 1-21, December.
    12. Binju P Raj & Chandan Swaroop Meena & Nehul Agarwal & Lohit Saini & Shabir Hussain Khahro & Umashankar Subramaniam & Aritra Ghosh, 2021. "A Review on Numerical Approach to Achieve Building Energy Efficiency for Energy, Economy and Environment (3E) Benefit," Energies, MDPI, vol. 14(15), pages 1-26, July.
    13. Piotr Michalak, 2022. "Thermal—Airflow Coupling in Hourly Energy Simulation of a Building with Natural Stack Ventilation," Energies, MDPI, vol. 15(11), pages 1-18, June.
    14. Mottaghizadeh, Pegah & Jabbari, Faryar & Brouwer, Jack, 2022. "Integrated solid oxide fuel cell, solar PV, and battery storage system to achieve zero net energy residential nanogrid in California," Applied Energy, Elsevier, vol. 323(C).
    15. Li, Sihui & Peng, Jinqing & Zou, Bin & Li, Bojia & Lu, Chujie & Cao, Jingyu & Luo, Yimo & Ma, Tao, 2021. "Zero energy potential of photovoltaic direct-driven air conditioners with considering the load flexibility of air conditioners," Applied Energy, Elsevier, vol. 304(C).
    16. Krarti, Moncef & Aldubyan, Mohammad, 2021. "Review analysis of COVID-19 impact on electricity demand for residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    17. Mokhtar Aly & Emad A. Mohamed & Hegazy Rezk & Ahmed M. Nassef & Mostafa A. Elhosseini & Ahmed Shawky, 2023. "An Improved Optimally Designed Fuzzy Logic-Based MPPT Method for Maximizing Energy Extraction of PEMFC in Green Buildings," Energies, MDPI, vol. 16(3), pages 1-23, January.
    18. Kavian, Soheil & Aghanajafi, Cyrus & Jafari Mosleh, Hassan & Nazari, Arash & Nazari, Ashkan, 2020. "Exergy, economic and environmental evaluation of an optimized hybrid photovoltaic-geothermal heat pump system," Applied Energy, Elsevier, vol. 276(C).
    19. Kaynakli, Omer, 2014. "Economic thermal insulation thickness for pipes and ducts: A review study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 184-194.
    20. Almalkawi, Areej T. & Soroushian, Parviz & Shrestha, Som S., 2019. "Evaluation of the Energy-Efficiency of an Aerated Slurry-Infiltrated Mesh Building System with Biomass-Based Insulation," Renewable Energy, Elsevier, vol. 133(C), pages 797-806.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2673-:d:1095657. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.