IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v171y2021icp606-620.html
   My bibliography  Save this article

Variability of sediment processes around a tidal farm in a theoretical channel

Author

Listed:
  • Auguste, Christelle
  • Nader, Jean-Roch
  • Marsh, Philip
  • Cossu, Remo
  • Penesis, Irene

Abstract

Sediment transport plays a crucial role in coastal ecosystems and is one of the least known parameters in high energy sites. The recent development of tidal energy projects challenges the scientific community to better understand this natural phenomenon and the interactions with tidal turbines. Using MIKE21/3 software from DHI, a benchmark for sediment transport model was developed with simulations with and without a tidal farm in idealised two and three-dimensional tidal channels. Results reveal that a 2D approach is sufficient for regional scale morphological assessments, however 3D models allow for a closer examination of influences around the tidal farm. Differences in calculating sediment transport rates based on approaches after Engelund & Fredsøe and Van Rijn formulae illustrate the degree of uncertainty in modelling sediment transport rates. Results for the Engelund & Fredsøe models also show that they are sensitive to mesh resolution in equilibrium conditions and are more stable in non-equilibrium conditions for the bed level change rates. Tests have also demonstrated that models using Engelund & Fredsøe formulae are more sensitive to physical characteristics than models based on Van Rijn, accentuating the necessity to evaluate sediment transport formulae with field data before making a choice of model.

Suggested Citation

  • Auguste, Christelle & Nader, Jean-Roch & Marsh, Philip & Cossu, Remo & Penesis, Irene, 2021. "Variability of sediment processes around a tidal farm in a theoretical channel," Renewable Energy, Elsevier, vol. 171(C), pages 606-620.
  • Handle: RePEc:eee:renene:v:171:y:2021:i:c:p:606-620
    DOI: 10.1016/j.renene.2021.02.147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121003268
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.02.147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nash, S. & Phoenix, A., 2017. "A review of the current understanding of the hydro-environmental impacts of energy removal by tidal turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 648-662.
    2. Robins, Peter E. & Neill, Simon P. & Lewis, Matt J., 2014. "Impact of tidal-stream arrays in relation to the natural variability of sedimentary processes," Renewable Energy, Elsevier, vol. 72(C), pages 311-321.
    3. Neill, Simon P. & Litt, Emmer J. & Couch, Scott J. & Davies, Alan G., 2009. "The impact of tidal stream turbines on large-scale sediment dynamics," Renewable Energy, Elsevier, vol. 34(12), pages 2803-2812.
    4. Martin-Short, R. & Hill, J. & Kramer, S.C. & Avdis, A. & Allison, P.A. & Piggott, M.D., 2015. "Tidal resource extraction in the Pentland Firth, UK: Potential impacts on flow regime and sediment transport in the Inner Sound of Stroma," Renewable Energy, Elsevier, vol. 76(C), pages 596-607.
    5. Haverson, David & Bacon, John & Smith, Helen C.M. & Venugopal, Vengatesan & Xiao, Qing, 2018. "Modelling the hydrodynamic and morphological impacts of a tidal stream development in Ramsey Sound," Renewable Energy, Elsevier, vol. 126(C), pages 876-887.
    6. Neill, Simon P. & Jordan, James R. & Couch, Scott J., 2012. "Impact of tidal energy converter (TEC) arrays on the dynamics of headland sand banks," Renewable Energy, Elsevier, vol. 37(1), pages 387-397.
    7. Yang, Zhaoqing & Wang, Taiping & Copping, Andrea E., 2013. "Modeling tidal stream energy extraction and its effects on transport processes in a tidal channel and bay system using a three-dimensional coastal ocean model," Renewable Energy, Elsevier, vol. 50(C), pages 605-613.
    8. Fairley, I. & Masters, I. & Karunarathna, H., 2015. "The cumulative impact of tidal stream turbine arrays on sediment transport in the Pentland Firth," Renewable Energy, Elsevier, vol. 80(C), pages 755-769.
    9. Deng, Guizhong & Zhang, Zhaoru & Li, Ye & Liu, Hailong & Xu, Wentao & Pan, Yulin, 2020. "Prospective of development of large-scale tidal current turbine array: An example numerical investigation of Zhejiang, China," Applied Energy, Elsevier, vol. 264(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christelle Auguste & Philip Marsh & Jean-Roch Nader & Irene Penesis & Remo Cossu, 2021. "Modelling Morphological Changes and Migration of Large Sand Waves in a Very Energetic Tidal Environment: Banks Strait, Australia," Energies, MDPI, vol. 14(13), pages 1-30, July.
    2. Auguste, Christelle & Nader, Jean-Roch & Marsh, Philip & Penesis, Irene & Cossu, Remo, 2022. "Modelling the influence of Tidal Energy Converters on sediment dynamics in Banks Strait, Tasmania," Renewable Energy, Elsevier, vol. 188(C), pages 1105-1119.
    3. Yang, Zhixue & Ren, Zhouyang & Li, Hui & Pan, Zhen & Xia, Weiyi, 2024. "A review of tidal current power generation farm planning: Methodologies, characteristics and challenges," Renewable Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christelle Auguste & Philip Marsh & Jean-Roch Nader & Remo Cossu & Irene Penesis, 2020. "Towards a Tidal Farm in Banks Strait, Tasmania: Influence of Tidal Array on Hydrodynamics," Energies, MDPI, vol. 13(20), pages 1-22, October.
    2. Deng, Guizhong & Zhang, Zhaoru & Li, Ye & Liu, Hailong & Xu, Wentao & Pan, Yulin, 2020. "Prospective of development of large-scale tidal current turbine array: An example numerical investigation of Zhejiang, China," Applied Energy, Elsevier, vol. 264(C).
    3. Auguste, Christelle & Nader, Jean-Roch & Marsh, Philip & Penesis, Irene & Cossu, Remo, 2022. "Modelling the influence of Tidal Energy Converters on sediment dynamics in Banks Strait, Tasmania," Renewable Energy, Elsevier, vol. 188(C), pages 1105-1119.
    4. Nash, S. & Phoenix, A., 2017. "A review of the current understanding of the hydro-environmental impacts of energy removal by tidal turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 648-662.
    5. Musa, Mirko & Hill, Craig & Guala, Michele, 2019. "Interaction between hydrokinetic turbine wakes and sediment dynamics: array performance and geomorphic effects under different siting strategies and sediment transport conditions," Renewable Energy, Elsevier, vol. 138(C), pages 738-753.
    6. Fairley, I. & Masters, I. & Karunarathna, H., 2015. "The cumulative impact of tidal stream turbine arrays on sediment transport in the Pentland Firth," Renewable Energy, Elsevier, vol. 80(C), pages 755-769.
    7. Fairley, I. & Karunarathna, H. & Masters, I., 2018. "The influence of waves on morphodynamic impacts of energy extraction at a tidal stream turbine site in the Pentland Firth," Renewable Energy, Elsevier, vol. 125(C), pages 630-647.
    8. Marco Piano & Peter E. Robins & Alan G. Davies & Simon P. Neill, 2018. "The Influence of Intra-Array Wake Dynamics on Depth-Averaged Kinetic Tidal Turbine Energy Extraction Simulations," Energies, MDPI, vol. 11(10), pages 1-21, October.
    9. De Dominicis, Michela & O'Hara Murray, Rory & Wolf, Judith, 2017. "Multi-scale ocean response to a large tidal stream turbine array," Renewable Energy, Elsevier, vol. 114(PB), pages 1160-1179.
    10. Goward Brown, Alice J. & Neill, Simon P. & Lewis, Matthew J., 2017. "Tidal energy extraction in three-dimensional ocean models," Renewable Energy, Elsevier, vol. 114(PA), pages 244-257.
    11. Roche, R.C. & Walker-Springett, K. & Robins, P.E. & Jones, J. & Veneruso, G. & Whitton, T.A. & Piano, M. & Ward, S.L. & Duce, C.E. & Waggitt, J.J. & Walker-Springett, G.R. & Neill, S.P. & Lewis, M.J. , 2016. "Research priorities for assessing potential impacts of emerging marine renewable energy technologies: Insights from developments in Wales (UK)," Renewable Energy, Elsevier, vol. 99(C), pages 1327-1341.
    12. Christelle Auguste & Philip Marsh & Jean-Roch Nader & Irene Penesis & Remo Cossu, 2021. "Modelling Morphological Changes and Migration of Large Sand Waves in a Very Energetic Tidal Environment: Banks Strait, Australia," Energies, MDPI, vol. 14(13), pages 1-30, July.
    13. Ian Masters & Alison Williams & T. Nick Croft & Michael Togneri & Matt Edmunds & Enayatollah Zangiabadi & Iain Fairley & Harshinie Karunarathna, 2015. "A Comparison of Numerical Modelling Techniques for Tidal Stream Turbine Analysis," Energies, MDPI, vol. 8(8), pages 1-21, July.
    14. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    15. Wei-Bo Chen & Hongey Chen & Lee-Yaw Lin & Yi-Chiang Yu, 2017. "Tidal Current Power Resources and Influence of Sea-Level Rise in the Coastal Waters of Kinmen Island, Taiwan," Energies, MDPI, vol. 10(5), pages 1-15, May.
    16. Soto-Rivas, Karina & Richter, David & Escauriaza, Cristian, 2022. "Flow effects of finite-sized tidal turbine arrays in the Chacao Channel, Southern Chile," Renewable Energy, Elsevier, vol. 195(C), pages 637-647.
    17. Philip A. Gillibrand & Roy A. Walters & Jason McIlvenny, 2016. "Numerical Simulations of the Effects of a Tidal Turbine Array on Near-Bed Velocity and Local Bed Shear Stress," Energies, MDPI, vol. 9(10), pages 1-22, October.
    18. Elie, B. & Oger, G. & Guillerm, P.-E. & Alessandrini, B., 2017. "Simulation of horizontal axis tidal turbine wakes using a Weakly-Compressible Cartesian Hydrodynamic solver with local mesh refinement," Renewable Energy, Elsevier, vol. 108(C), pages 336-354.
    19. Li, Xiaorong & Li, Ming & McLelland, Stuart J. & Jordan, Laura-Beth & Simmons, Stephen M. & Amoudry, Laurent O. & Ramirez-Mendoza, Rafael & Thorne, Peter D., 2017. "Modelling tidal stream turbines in a three-dimensional wave-current fully coupled oceanographic model," Renewable Energy, Elsevier, vol. 114(PA), pages 297-307.
    20. Goh, Hooi-Bein & Lai, Sai-Hin & Jameel, Mohammed & Teh, Hee-Min, 2020. "Potential of coastal headlands for tidal energy extraction and the resulting environmental effects along Negeri Sembilan coastlines: A numerical simulation study," Energy, Elsevier, vol. 192(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:171:y:2021:i:c:p:606-620. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.