IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4480-d406545.html
   My bibliography  Save this article

Condition Maintenance Decision of Wind Turbine Gearbox Based on Stochastic Differential Equation

Author

Listed:
  • Hongsheng Su

    (School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
    Rail Transit Electrical Automation Engineering Laboratory of Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Dantong Wang

    (School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
    Rail Transit Electrical Automation Engineering Laboratory of Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Xuping Duan

    (School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

Abstract

Maintenance decision analysis is necessary to ensure the safe and stable operation of wind turbine equipment. To address gearboxes with a high failure rate in wind turbines, this paper establishes a new stochastic differential equation model of gearbox state transition to maximize the utilization of gearboxes. This model divides the state of the gearbox into two parts: internal degradation and external random interference. Weibull distribution and polynomial approximation were used to construct the internal degradation model of the gearbox. The external random interference is simulated by Brownian motion. On the basis of the analysis of monitoring data, the parameters of the gearbox state model were solved using the Newton–Raphson iterative method and entropy method. The state change of the gearbox was simulated in MATLAB, and the residual value between the predicted state and the real state was calculated. Compared with the state transformation model constructed by the traditional ordinary differential equation and the gamma distribution, the Weibull polynomial approximation stochastic model can better reflect the state of the device. With reliability set as the decision goal, the maintenance time of the gearbox is predicted, and the validity of the model is verified through case analysis.

Suggested Citation

  • Hongsheng Su & Dantong Wang & Xuping Duan, 2020. "Condition Maintenance Decision of Wind Turbine Gearbox Based on Stochastic Differential Equation," Energies, MDPI, vol. 13(17), pages 1-13, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4480-:d:406545
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4480/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4480/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hameed, Z. & Hong, Y.S. & Cho, Y.M. & Ahn, S.H. & Song, C.K., 2009. "Condition monitoring and fault detection of wind turbines and related algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 1-39, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sabarathinam Srinivasan & Suresh Kumarasamy & Zacharias E. Andreadakis & Pedro G. Lind, 2023. "Artificial Intelligence and Mathematical Models of Power Grids Driven by Renewable Energy Sources: A Survey," Energies, MDPI, vol. 16(14), pages 1-56, July.
    2. Sunoh Kim & Jin Hur, 2020. "A Probabilistic Modeling Based on Monte Carlo Simulation of Wind Powered EV Charging Stations for Steady-States Security Analysis," Energies, MDPI, vol. 13(20), pages 1-13, October.
    3. Hongsheng Su & Yifan Zhao & Xueqian Wang, 2023. "Analysis of a State Degradation Model and Preventive Maintenance Strategies for Wind Turbine Generators Based on Stochastic Differential Equations," Mathematics, MDPI, vol. 11(12), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Beganovic, Nejra & Söffker, Dirk, 2016. "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained result," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 68-83.
    2. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    3. Xueli An & Dongxiang Jiang, 2014. "Bearing fault diagnosis of wind turbine based on intrinsic time-scale decomposition frequency spectrum," Journal of Risk and Reliability, , vol. 228(6), pages 558-566, December.
    4. Le Zhang & Qiang Yang, 2020. "Investigation of the Design and Fault Prediction Method for an Abrasive Particle Sensor Used in Wind Turbine Gearbox," Energies, MDPI, vol. 13(2), pages 1-13, January.
    5. Ding Zhai & Anyang Lu & Jinghao Li & Qingling Zhang, 2016. "Fault detection for singular switched linear systems with multiple time-varying delay in finite frequency domain," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(13), pages 3232-3257, October.
    6. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    7. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    8. Sellak, Hamza & Ouhbi, Brahim & Frikh, Bouchra & Palomares, Iván, 2017. "Towards next-generation energy planning decision-making: An expert-based framework for intelligent decision support," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1544-1577.
    9. Quan Zhou & Taotao Xiong & Mubin Wang & Chenmeng Xiang & Qingpeng Xu, 2017. "Diagnosis and Early Warning of Wind Turbine Faults Based on Cluster Analysis Theory and Modified ANFIS," Energies, MDPI, vol. 10(7), pages 1-15, July.
    10. Moynihan, Bridget & Moaveni, Babak & Liberatore, Sauro & Hines, Eric, 2022. "Estimation of blade forces in wind turbines using blade root strain measurements with OpenFAST verification," Renewable Energy, Elsevier, vol. 184(C), pages 662-676.
    11. Yang, Wenxian & Court, Richard & Jiang, Jiesheng, 2013. "Wind turbine condition monitoring by the approach of SCADA data analysis," Renewable Energy, Elsevier, vol. 53(C), pages 365-376.
    12. Taylor, Josh A. & Dhople, Sairaj V. & Callaway, Duncan S., 2016. "Power systems without fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1322-1336.
    13. Peng Guo & Nan Bai, 2011. "Wind Turbine Gearbox Condition Monitoring with AAKR and Moving Window Statistic Methods," Energies, MDPI, vol. 4(11), pages 1-17, November.
    14. Enevoldsen, Peter, 2016. "Onshore wind energy in Northern European forests: Reviewing the risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1251-1262.
    15. Wakui, Tetsuya & Yokoyama, Ryohei, 2013. "Wind speed sensorless performance monitoring based on operating behavior for stand-alone vertical axis wind turbine," Renewable Energy, Elsevier, vol. 53(C), pages 49-59.
    16. Hare, James & Shi, Xiaofang & Gupta, Shalabh & Bazzi, Ali, 2016. "Fault diagnostics in smart micro-grids: A survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1114-1124.
    17. Wenyi, Liu & Zhenfeng, Wang & Jiguang, Han & Guangfeng, Wang, 2013. "Wind turbine fault diagnosis method based on diagonal spectrum and clustering binary tree SVM," Renewable Energy, Elsevier, vol. 50(C), pages 1-6.
    18. Willis, D.J. & Niezrecki, C. & Kuchma, D. & Hines, E. & Arwade, S.R. & Barthelmie, R.J. & DiPaola, M. & Drane, P.J. & Hansen, C.J. & Inalpolat, M. & Mack, J.H. & Myers, A.T. & Rotea, M., 2018. "Wind energy research: State-of-the-art and future research directions," Renewable Energy, Elsevier, vol. 125(C), pages 133-154.
    19. Cooperman, Aubryn & Martinez, Marcias, 2015. "Load monitoring for active control of wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 189-201.
    20. Wenna Zhang & Xiandong Ma, 2016. "Simultaneous Fault Detection and Sensor Selection for Condition Monitoring of Wind Turbines," Energies, MDPI, vol. 9(4), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4480-:d:406545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.