IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5200-d424158.html
   My bibliography  Save this article

Methane Hydrate Formation and Dissociation in Sand Media: Effect of Water Saturation, Gas Flowrate and Particle Size

Author

Listed:
  • Fatima Doria Benmesbah

    (Unité Géosciences Marines, Laboratoire Cycles Géochimiques (LCG), IFREMER, F-29280 Plouzané, France
    INRAE, FRISE, Université Paris-Saclay, 92761 Antony, France)

  • Livio Ruffine

    (Unité Géosciences Marines, Laboratoire Cycles Géochimiques (LCG), IFREMER, F-29280 Plouzané, France)

  • Pascal Clain

    (INRAE, FRISE, Université Paris-Saclay, 92761 Antony, France
    Research Center, Léonard de Vinci Pôle Universitaire, 92916 Paris, France,)

  • Véronique Osswald

    (INRAE, FRISE, Université Paris-Saclay, 92761 Antony, France)

  • Olivia Fandino

    (Unité Géosciences Marines, Laboratoire Cycles Géochimiques (LCG), IFREMER, F-29280 Plouzané, France)

  • Laurence Fournaison

    (INRAE, FRISE, Université Paris-Saclay, 92761 Antony, France)

  • Anthony Delahaye

    (INRAE, FRISE, Université Paris-Saclay, 92761 Antony, France)

Abstract

Assessing the influence of key parameters governing the formation of hydrates and determining the capacity of the latter to store gaseous molecules is needed to improve our understanding of the role of natural gas hydrates in the oceanic methane cycle. Such knowledge will also support the development of new industrial processes and technologies such as those related to thermal energy storage. In this study, high-pressure laboratory methane hydrate formation and dissociation experiments were carried out in a sandy matrix at a temperature around 276.65 K. Methane was continuously injected at constant flowrate to allow hydrate formation over the course of the injection step. The influence of water saturation, methane injection flowrate and particle size on hydrate formation kinetics and methane storage capacity were investigated. Six water saturations (10.8%, 21.6%, 33%, 43.9%, 55% and 66.3%), three gas flowrates (29, 58 and 78 mLn·min −1 ) and three classes of particle size (80–140, 315–450 and 80–450 µm) were tested, and the resulting data were tabulated. Overall, the measured induction time obtained at 53–57% water saturation has an average value of 58 ± 14 min minutes with clear discrepancies that express the stochastic nature of hydrate nucleation, and/or results from the heterogeneity in the porosity and permeability fields of the sandy core due to heterogeneous particles. Besides, the results emphasize a clear link between the gas injection flowrate and the induction time whatever the particle size and water saturation. An increase in the gas flowrate from 29 to 78 mLn·min −1 is accompanied by a decrease in the induction time up to ~100 min (i.e., ~77% decrease). However, such clear behaviour is less conspicuous when varying either the particle size or the water saturation. Likewise, the volume of hydrate-bound methane increases with increasing water saturation. This study showed that water is not totally converted into hydrates and most of the calculated conversion ratios are around 74–84%, with the lowest value of 49.5% conversion at 54% of water saturation and the highest values of 97.8% for the lowest water saturation (10.8%). Comparison with similar experiments in the literature is also carried out herein.

Suggested Citation

  • Fatima Doria Benmesbah & Livio Ruffine & Pascal Clain & Véronique Osswald & Olivia Fandino & Laurence Fournaison & Anthony Delahaye, 2020. "Methane Hydrate Formation and Dissociation in Sand Media: Effect of Water Saturation, Gas Flowrate and Particle Size," Energies, MDPI, vol. 13(19), pages 1-21, October.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5200-:d:424158
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5200/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5200/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Xiaolin & Dennis, Mike & Hou, Liangzhuo, 2014. "Clathrate hydrate technology for cold storage in air conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 34-51.
    2. Wang, Pengfei & Wang, Shenglong & Song, Yongchen & Yang, Mingjun, 2018. "Dynamic measurements of methane hydrate formation/dissociation in different gas flow direction," Applied Energy, Elsevier, vol. 227(C), pages 703-709.
    3. E. Dendy Sloan, 2003. "Fundamental principles and applications of natural gas hydrates," Nature, Nature, vol. 426(6964), pages 353-359, November.
    4. Klaus Wallmann & Elena Pinero & Ewa Burwicz & Matthias Haeckel & Christian Hensen & Andrew Dale & Lars Ruepke, 2012. "The Global Inventory of Methane Hydrate in Marine Sediments: A Theoretical Approach," Energies, MDPI, vol. 5(7), pages 1-50, July.
    5. Cheng, Chuanxiao & Wang, Fan & Tian, Yongjia & Wu, Xuehong & Zheng, Jili & Zhang, Jun & Li, Longwei & Yang, Penglin & Zhao, Jiafei, 2020. "Review and prospects of hydrate cold storage technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lei Wang & Jin Yang & Lilin Li & Ting Sun & Dongsheng Xu, 2022. "Study on the Mechanical Properties of Natural Gas Hydrate Reservoirs with Multicomponent under Different Engineering Conditions," Energies, MDPI, vol. 15(23), pages 1-23, November.
    2. Yulia Zaripova & Vladimir Yarkovoi & Mikhail Varfolomeev & Rail Kadyrov & Andrey Stoporev, 2021. "Influence of Water Saturation, Grain Size of Quartz Sand and Hydrate-Former on the Gas Hydrate Formation," Energies, MDPI, vol. 14(5), pages 1-15, February.
    3. Yulia F. Chirkova & Ulukbek Zh. Mirzakimov & Matvei E. Semenov & Roman S. Pavelyev & Mikhail A. Varfolomeev, 2022. "Promising Hydrate Formation Promoters Based on Sodium Sulfosuccinates of Polyols," Energies, MDPI, vol. 16(1), pages 1-9, December.
    4. Alberto Maria Gambelli & Umberta Tinivella & Rita Giovannetti & Beatrice Castellani & Michela Giustiniani & Andrea Rossi & Marco Zannotti & Federico Rossi, 2021. "Observation of the Main Natural Parameters Influencing the Formation of Gas Hydrates," Energies, MDPI, vol. 14(7), pages 1-25, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luís Bernardes & Júlio Carneiro & Pedro Madureira & Filipe Brandão & Cristina Roque, 2015. "Determination of Priority Study Areas for Coupling CO2 Storage and CH 4 Gas Hydrates Recovery in the Portuguese Offshore Area," Energies, MDPI, vol. 8(9), pages 1-17, September.
    2. Park, Joon Ho & Park, Jungjoon & Lee, Jae Won & Kang, Yong Tae, 2023. "Progress in CO2 hydrate formation and feasibility analysis for cold thermal energy harvesting application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    3. Cheng, Chuanxiao & Wang, Fan & Qi, Tian & Xu, Peiyuan & Zhang, Quanguo & Zhang, Zhiping & He, Chao & Zhang, Jun & Zheng, Jili & Zhao, Jiafei & Zhang, Hanquan & Xiao, Bo, 2021. "Depressurization-induced changes in memory effect of hydrate reformation correlated with sediment morphology," Energy, Elsevier, vol. 217(C).
    4. Ouyang, Qian & Pandey, Jyoti Shanker & von Solms, Nicolas, 2022. "Insights into multistep depressurization of CH4/CO2 mixed hydrates in unconsolidated sediments," Energy, Elsevier, vol. 260(C).
    5. Xiao, Peng & Dong, Bao-Can & Li, Jia & Zhang, Hong-Liang & Chen, Guang-Jin & Sun, Chang-Yu & Huang, Xing, 2022. "An approach to highly efficient filtration of methane hydrate slurry for the continuous hydrate production," Energy, Elsevier, vol. 259(C).
    6. Yiwei Wang & Lin Wang & Zhen Hu & Youli Li & Qiang Sun & Aixian Liu & Lanying Yang & Jing Gong & Xuqiang Guo, 2021. "The Thermodynamic and Kinetic Effects of Sodium Lignin Sulfonate on Ethylene Hydrate Formation," Energies, MDPI, vol. 14(11), pages 1-19, June.
    7. Veluswamy, Hari Prakash & Kumar, Asheesh & Seo, Yutaek & Lee, Ju Dong & Linga, Praveen, 2018. "A review of solidified natural gas (SNG) technology for gas storage via clathrate hydrates," Applied Energy, Elsevier, vol. 216(C), pages 262-285.
    8. Hongsheng Dong & Lunxiang Zhang & Jiaqi Wang, 2022. "Formation, Exploration, and Development of Natural Gas Hydrates," Energies, MDPI, vol. 15(16), pages 1-4, August.
    9. Yang, Mingjun & Chong, Zheng Rong & Zheng, Jianan & Song, Yongchen & Linga, Praveen, 2017. "Advances in nuclear magnetic resonance (NMR) techniques for the investigation of clathrate hydrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1346-1360.
    10. Dong, Hongsheng & Wang, Jiaqi & Xie, Zhuoxue & Wang, Bin & Zhang, Lunxiang & Shi, Quan, 2021. "Potential applications based on the formation and dissociation of gas hydrates," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    11. Lei, Gang & Tang, Jiadi & Zhang, Ling & Wu, Qi & Li, Jun, 2024. "Effective thermal conductivity for hydrate-bearing sediments under stress and local thermal stimulation conditions: A novel analytical model," Energy, Elsevier, vol. 288(C).
    12. Zhang, Fengyuan & Wang, Xiaolin & Lou, Xia & Lipiński, Wojciech, 2021. "The effect of sodium dodecyl sulfate and dodecyltrimethylammonium chloride on the kinetics of CO2 hydrate formation in the presence of tetra-n-butyl ammonium bromide for carbon capture applications," Energy, Elsevier, vol. 227(C).
    13. Chen, Siyuan & Wang, Yanhong & Lang, Xuemei & Fan, Shuanshi & Li, Gang, 2023. "Rapid and high hydrogen storage in epoxycyclopentane hydrate at moderate pressure," Energy, Elsevier, vol. 268(C).
    14. Chen, Chang & Zhang, Yu & Li, Xiaosen & Gao, Fei & Chen, Yuru & Chen, Zhaoyang, 2024. "Experimental investigation into gas production from methane hydrate in sediments with different contents of illite clay by depressurization," Energy, Elsevier, vol. 296(C).
    15. Maria Filomena Loreto & Umberta Tinivella & Flavio Accaino & Michela Giustiniani, 2010. "Offshore Antarctic Peninsula Gas Hydrate Reservoir Characterization by Geophysical Data Analysis," Energies, MDPI, vol. 4(1), pages 1-18, December.
    16. Yang, Ming & Wang, Yuze & Wu, Hui & Zhang, Pengwei & Ju, Xin, 2024. "Thermo-hydro-chemical modeling and analysis of methane extraction from fractured gas hydrate-bearing sediments," Energy, Elsevier, vol. 292(C).
    17. Xu, Chun-Gang & Cai, Jing & Yu, Yi-Song & Yan, Ke-Feng & Li, Xiao-Sen, 2018. "Effect of pressure on methane recovery from natural gas hydrates by methane-carbon dioxide replacement," Applied Energy, Elsevier, vol. 217(C), pages 527-536.
    18. Guan, Dawei & Qu, Aoxing & Gao, Peng & Fan, Qi & Li, Qingping & Zhang, Lunxiang & Zhao, Jiafei & Song, Yongchen & Yang, Lei, 2023. "Improved temperature distribution upon varying gas producing channel in gas hydrate reservoir: Insights from the Joule-Thomson effect," Applied Energy, Elsevier, vol. 348(C).
    19. Maria De La Fuente & Sandra Arndt & Héctor Marín-Moreno & Tim A. Minshull, 2022. "Assessing the Benthic Response to Climate-Driven Methane Hydrate Destabilisation: State of the Art and Future Modelling Perspectives," Energies, MDPI, vol. 15(9), pages 1-32, May.
    20. Choi, Wonjung & Lee, Yohan & Mok, Junghoon & Seo, Yongwon, 2020. "Influence of feed gas composition on structural transformation and guest exchange behaviors in sH hydrate – Flue gas replacement for energy recovery and CO2 sequestration," Energy, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5200-:d:424158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.