IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i19p5081-d421189.html
   My bibliography  Save this article

Evolution of Production and Transport Characteristics of Steeply-Dipping Ultra-Thick Coalbed Methane Reservoirs

Author

Listed:
  • Shun Liang

    (State Key Laboratory of Coal Resource and Mine Safety, School of Mines, China University of Mining and Technology, Xuzhou 221008, China
    EMS Energy Institute, G3 Center and Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA)

  • Hao Han

    (State Key Laboratory of Coal Resource and Mine Safety, School of Mines, China University of Mining and Technology, Xuzhou 221008, China)

  • Derek Elsworth

    (EMS Energy Institute, G3 Center and Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA)

  • Xuehai Fu

    (Key Laboratory of CBM Resources and Reservoir Formation Process, Ministry of Education, China University of Mining and Technology, Xuzhou 221008, China)

  • Qiangling Yao

    (State Key Laboratory of Coal Resource and Mine Safety, School of Mines, China University of Mining and Technology, Xuzhou 221008, China)

  • Junqiang Kang

    (EMS Energy Institute, G3 Center and Energy and Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA
    Key Laboratory of CBM Resources and Reservoir Formation Process, Ministry of Education, China University of Mining and Technology, Xuzhou 221008, China)

  • Xin Li

    (School of Geology and Mining Engineering, Xinjiang University, Urumchi 830047, China)

  • Xuehua Li

    (State Key Laboratory of Coal Resource and Mine Safety, School of Mines, China University of Mining and Technology, Xuzhou 221008, China)

Abstract

The large spatial variability of in-situ stress and initial reservoir pressure in steeply-dipping ultra-thick coalbed methane (UTCBM) reservoirs exert strong control on the initial distribution of stress-sensitive permeability. This results in significant differences in the propagation of reservoir depressurization, gas production characteristics, distribution of fluid saturation, and evolution of permeability relative to flat-lying and thin counterpart coalbed methane (CBM) reservoirs. We contrast these responses using the Fukang mining area of the Junggar Basin, Xinjiang, China, as a type-example using coupled hydro-mechanical modeling. Production response indicates: (1) Dual peaks in CBM production rate, due to the asynchronous changes in the gas production rate in each the upper and lower sections of the reservoir; (2) higher depressurization and water saturation levels in the lower section of the reservoir relative to the upper at any given distance from the production well that ameliorate with time to be similar to those of standard horizontal reservoirs; (3) the heterogeneity in effective stress is further amplified by the asymmetry of the initial pressure drawdown distribution of the reservoir to exert extreme control on the down-dip evolution of absolute permeability—with implications for production. Field drainage data and simulation results obtained in this study more accurately reflect the drainage characteristics of the steeply-dipping UTCBM reservoirs. For ultra-thick low-rank coal seams, permeability anisotropy plays an important role in determining the utility of horizontal wells and hydraulic fracturing to maximize rates and yields CBM production, and requiring further study.

Suggested Citation

  • Shun Liang & Hao Han & Derek Elsworth & Xuehai Fu & Qiangling Yao & Junqiang Kang & Xin Li & Xuehua Li, 2020. "Evolution of Production and Transport Characteristics of Steeply-Dipping Ultra-Thick Coalbed Methane Reservoirs," Energies, MDPI, vol. 13(19), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5081-:d:421189
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/19/5081/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/19/5081/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fan, Chaojun & Elsworth, Derek & Li, Sheng & Zhou, Lijun & Yang, Zhenhua & Song, Yu, 2019. "Thermo-hydro-mechanical-chemical couplings controlling CH4 production and CO2 sequestration in enhanced coalbed methane recovery," Energy, Elsevier, vol. 173(C), pages 1054-1077.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fan, Lurong & Xu, Jiuping, 2020. "Authority–enterprise equilibrium based mixed subsidy mechanism for carbon reduction and energy utilization in the coalbed methane industry," Energy Policy, Elsevier, vol. 147(C).
    2. Cai, Mingyu & Su, Yuliang & Elsworth, Derek & Li, Lei & Fan, Liyao, 2021. "Hydro-mechanical-chemical modeling of sub-nanopore capillary-confinement on CO2-CCUS-EOR," Energy, Elsevier, vol. 225(C).
    3. Ziwen Li & Hongjin Yu & Yansong Bai, 2022. "Numerical Simulation of CO 2 -ECBM Based on Multi-Physical Field Coupling Model," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    4. Zhang, Tianjun & Wu, Jinyu & Pang, Mingkun & Liu, Rongtao & Zhu, Shipeng & Pan, Hongyu, 2024. "Experimental study on the negative pressure loss generated by the gas influx process around a long borehole," Energy, Elsevier, vol. 296(C).
    5. Liu, Zhengdong & Hu, Ze & Zhu, Wancheng & Zhao, Tingting & Liu, Shuyuan & Guo, Zhiguo & Sun, Chen & Bai, Gang, 2024. "Effect of coal permeability evolution on CO2 storage capacity under phase partial pressure in ScCO2-ECBM processes," Energy, Elsevier, vol. 297(C).
    6. Wenjie Xu & Xigui Zheng & Cancan Liu & Peng Li & Boyang Li & Kundai Michael Shayanowako & Jiyu Wang & Xiaowei Guo & Guowei Lai, 2022. "Numerical Simulation Study of High-Pressure Air Injection to Promote Gas Drainage," Sustainability, MDPI, vol. 14(21), pages 1-15, October.
    7. Gao, Xinyuan & Yang, Shenglai & Tian, Lerao & Shen, Bin & Bi, Lufei & Zhang, Yiqi & Wang, Mengyu & Rui, Zhenhua, 2024. "System and multi-physics coupling model of liquid-CO2 injection on CO2 storage with enhanced gas recovery (CSEGR) framework," Energy, Elsevier, vol. 294(C).
    8. Zhao, Li & Guanhua, Ni & Yan, Wang & Hehe, Jiang & Yongzan, Wen & Haoran, Dou & Mao, Jing, 2022. "Semi-homogeneous model of coal based on 3D reconstruction of CT images and its seepage-deformation characteristics," Energy, Elsevier, vol. 259(C).
    9. Zhang, Chaolin & Wang, Enyuan & Li, Bobo & Kong, Xiangguo & Xu, Jiang & Peng, Shoujian & Chen, Yuexia, 2023. "Laboratory experiments of CO2-enhanced coalbed methane recovery considering CO2 sequestration in a coal seam," Energy, Elsevier, vol. 262(PA).
    10. Wang, Kai & Wang, Yanhai & Xu, Chao & Guo, Haijun & Xu, Zhiyuan & Liu, Yifu & Dong, Huzi & Ju, Yang, 2023. "Modeling of multi-field gas desorption-diffusion in coal: A new insight into the bidisperse model," Energy, Elsevier, vol. 267(C).
    11. Lan, Wenjian & Wang, Hanxiang & Zhang, Xin & Fan, Hongbo & Feng, Kun & Liu, Yanxin & Sun, Bingyu, 2020. "Investigation on the mechanism of micro-cracks generated by microwave heating in coal and rock," Energy, Elsevier, vol. 206(C).
    12. Liu, Zhengdong & Lin, Xiaosong & Zhu, Wancheng & Hu, Ze & Hao, Congmeng & Su, Weiwei & Bai, Gang, 2023. "Effects of coal permeability rebound and recovery phenomenon on CO2 storage capacity under different coalbed temperature conditions during CO2-ECBM process," Energy, Elsevier, vol. 284(C).
    13. Zhou, Lijun & Zhou, Xihua & Fan, Chaojun & Bai, Gang, 2022. "Coal permeability evolution triggered by variable injection parameters during gas mixture enhanced methane recovery," Energy, Elsevier, vol. 252(C).
    14. Liu, Xudong & Sang, Shuxun & Zhou, Xiaozhi & Wang, Ziliang, 2023. "Coupled adsorption-hydro-thermo-mechanical-chemical modeling for CO2 sequestration and well production during CO2-ECBM," Energy, Elsevier, vol. 262(PA).
    15. Fan, Zhanglei & Fan, Gangwei & Zhang, Dongsheng & Zhang, Lei & Zhang, Shuai & Liang, Shuaishuai & Yu, Wei, 2021. "Optimal injection timing and gas mixture proportion for enhancing coalbed methane recovery," Energy, Elsevier, vol. 222(C).
    16. Zhao, Weizhong & Su, Xianbo & Xia, Daping & Hou, Shihui & Wang, Qian & Zhou, Yixuan, 2022. "Enhanced coalbed methane recovery by the modification of coal reservoir under the supercritical CO2 extraction and anaerobic digestion," Energy, Elsevier, vol. 259(C).
    17. Huang, HanWei & Yu, Hao & Xu, WenLong & Lyu, ChengSi & Micheal, Marembo & Xu, HengYu & Liu, He & Wu, HengAn, 2023. "A coupled thermo-hydro-mechanical-chemical model for production performance of oil shale reservoirs during in-situ conversion process," Energy, Elsevier, vol. 268(C).
    18. Lu, Yanjun & Han, Jinxuan & Yang, Manping & Chen, Xingyu & Zhu, Hongjian & Yang, Zhaozhong, 2023. "Molecular simulation of supercritical CO2 extracting organic matter from coal based on the technology of CO2-ECBM," Energy, Elsevier, vol. 266(C).
    19. Zhou, Lijun & Zhou, Xihua & Fan, Chaojun & Bai, Gang & Yang, Lei & Wang, Yiqi, 2023. "Modelling of flue gas injection promoted coal seam gas extraction incorporating heat-fluid-solid interactions," Energy, Elsevier, vol. 268(C).
    20. Geng, Weile & Huang, Gun & Guo, Shengli & Jiang, Changbao & Dong, Ziwen & Wang, Wensong, 2022. "Influence of long-term CH4 and CO2 treatment on the pore structure and mechanical strength characteristics of Baijiao coal," Energy, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:19:p:5081-:d:421189. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.