IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4985-d417550.html
   My bibliography  Save this article

The Impacts of the Energy Potential of Forest Biomass on the Local Market: An Example of South-Eastern Poland

Author

Listed:
  • Tomasz Dudek

    (Department of Agroecology, University of Rzeszów, Ćwiklińskiej 1a, 35-601 Rzeszów, Poland)

Abstract

Forest biomass is and will remain a primary source of renewable energy in many EU countries in the coming years. The aim of this study was to determine the energy potential of forest biomass on a regional scale with regard to the needs of its inhabitants in terms of electricity and heat consumption. The study was carried out in south-eastern Poland. Energy potential was calculated based on the determined wood mass and calorific value of wood. The current level of forest biomass acquisition satisfies 4.2% of the needs of the local market in terms of electricity and heat consumption. Taking into account high forest cover of the region (40%), the 60% annual increment of total harvesting, and obtaining biomass at the level of 30% of the total harvesting, waste wood from the forest can meet 58.1% of the needs of the local market in terms of electricity consumption and 14.4% of the need for thermal energy consumption. There is a certain niche in the fuel wood market that is currently unused, presenting the opportunity to develop this sector and generate additional jobs in local markets. However, the increase in obtained forest biomass must be in accordance with the principles of sustainable development.

Suggested Citation

  • Tomasz Dudek, 2020. "The Impacts of the Energy Potential of Forest Biomass on the Local Market: An Example of South-Eastern Poland," Energies, MDPI, vol. 13(18), pages 1-11, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4985-:d:417550
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4985/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4985/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Moiseyev, Alexander & Solberg, Birger & Kallio, A. Maarit I. & Lindner, Marcus, 2011. "An economic analysis of the potential contribution of forest biomass to the EU RES target and its implications for the EU forest industries," Journal of Forest Economics, Elsevier, vol. 17(2), pages 197-213, April.
    2. Haddad, Salwa & Britz, Wolfgang & Börner, Jan, 2017. "Impacts Of Increased Forest Biomass Demand In The European Bioeconomy," 57th Annual Conference, Weihenstephan, Germany, September 13-15, 2017 261986, German Association of Agricultural Economists (GEWISOLA).
    3. Manolis, E.N. & Zagas, T.D. & Karetsos, G.K. & Poravou, C.A., 2019. "Ecological restrictions in forest biomass extraction for a sustainable renewable energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 290-297.
    4. Karakosta, Charikleia & Dimopoulou, Stamatia & Doukas, Haris & Psarras, John, 2011. "The potential role of renewable energy in Moldova," Renewable Energy, Elsevier, vol. 36(12), pages 3550-3557.
    5. Luigi Pari & Simone Bergonzoli & Paola Cetera & Paolo Mattei & Vincenzo Alfano & Negar Rezaei & Alessandro Suardi & Giuseppe Toscano & Antonio Scarfone, 2020. "Storage of Fine Woodchips from a Medium Rotation Coppice Eucalyptus Plantation in Central Italy," Energies, MDPI, vol. 13(9), pages 1-13, May.
    6. Rodolfo Picchio & Francesco Latterini & Rachele Venanzi & Walter Stefanoni & Alessandro Suardi & Damiano Tocci & Luigi Pari, 2020. "Pellet Production from Woody and Non-Woody Feedstocks: A Review on Biomass Quality Evaluation," Energies, MDPI, vol. 13(11), pages 1-20, June.
    7. Trømborg, Erik & Havskjold, Monica & Lislebø, Ole & Rørstad, Per Kristian, 2011. "Projecting demand and supply of forest biomass for heating in Norway," Energy Policy, Elsevier, vol. 39(11), pages 7049-7058.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Księżopolski & Mirosław Drygas & Kamila Pronińska & Iwona Nurzyńska, 2020. "The Economic Effects of New Patterns of Energy Efficiency and Heat Sources in Rural Single-Family Houses in Poland," Energies, MDPI, vol. 13(23), pages 1-19, December.
    2. Ziółkowski, Paweł & Badur, Janusz & Pawlak- Kruczek, Halina & Stasiak, Kamil & Amiri, Milad & Niedzwiecki, Lukasz & Krochmalny, Krystian & Mularski, Jakub & Madejski, Paweł & Mikielewicz, Dariusz, 2022. "Mathematical modelling of gasification process of sewage sludge in reactor of negative CO2 emission power plant," Energy, Elsevier, vol. 244(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Halaj, Daniel & Brodrechtova, Yvonne, 2018. "Marketing decision making in the forest biomass market: The case of Austria, Finland and Slovakia," Forest Policy and Economics, Elsevier, vol. 97(C), pages 201-209.
    2. Marek Wieruszewski & Aleksandra Górna & Katarzyna Mydlarz & Krzysztof Adamowicz, 2022. "Wood Biomass Resources in Poland Depending on Forest Structure and Industrial Processing of Wood Raw Material," Energies, MDPI, vol. 15(13), pages 1-17, July.
    3. Stachowicz, Paweł & Stolarski, Mariusz J., 2024. "Pellets from mixtures of short rotation coppice with forest-derived biomass: Production costs and energy intensity," Renewable Energy, Elsevier, vol. 225(C).
    4. Kallio, A.M.I. & Salminen, O. & Sievänen, R., 2016. "Forests in the Finnish low carbon scenarios," Journal of Forest Economics, Elsevier, vol. 23(C), pages 45-62.
    5. Alice Favero & Robert Mendelsohn, 2013. "Evaluating the Global Role of Woody Biomass as a Mitigation Strategy," Working Papers 2013.37, Fondazione Eni Enrico Mattei.
    6. Kuznetsov, G.V. & Syrodoy, S.V. & Nigay, N.A. & Maksimov, V.I. & Gutareva, N.Yu., 2021. "Features of the processes of heat and mass transfer when drying a large thickness layer of wood biomass," Renewable Energy, Elsevier, vol. 169(C), pages 498-511.
    7. Onu Onu Olughu & Lope G. Tabil & Tim Dumonceaux & Edmund Mupondwa & Duncan Cree, 2021. "Comparative Study on Quality of Fuel Pellets from Switchgrass Treated with Different White-Rot Fungi," Energies, MDPI, vol. 14(22), pages 1-19, November.
    8. Paweł Stachowicz & Mariusz Jerzy Stolarski, 2022. "Thermophysical Properties and Elemental Composition of Black Locust, Poplar and Willow Biomass," Energies, MDPI, vol. 16(1), pages 1-16, December.
    9. Stolarski, Mariusz J. & Krzyżaniak, Michał & Olba-Zięty, Ewelina, 2024. "Energy efficiency of Silphium perfoliatum and Helianthus salicifolius biomass production," Energy, Elsevier, vol. 307(C).
    10. Menelio Bardales & Catherine Bukowski & Valentín Molina-Moreno & Francisco Jesús Gálvez-Sánchez & Ángel Fermín Ramos-Ridao, 2022. "A Tool for the Assessment of Forest Biomass as a Source of Rural Sustainable Energy in Natural Areas in Honduras," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    11. Nabavi, Vahid & Azizi, Majid & Tarmian, Asghar & Ray, Charles David, 2020. "Feasibility study on the production and consumption of wood pellets in Iran to meet return-on-investment and greenhouse gas emissions targets," Renewable Energy, Elsevier, vol. 151(C), pages 1-20.
    12. Johnston, Craig M.T. & Kooten, G. Cornelis van, 2014. "Carbon Neutrality of Hardwood and Softwood Biomass: Issues of Temporal Preference," Working Papers 190592, University of Victoria, Resource Economics and Policy.
    13. Magdalena Dołżyńska & Sławomir Obidziński & Jolanta Piekut & Güray Yildiz, 2020. "The Utilization of Plum Stones for Pellet Production and Investigation of Post-Combustion Flue Gas Emissions," Energies, MDPI, vol. 13(19), pages 1-19, October.
    14. Walter Stefanoni & Francesco Latterini & Javier Prieto Ruiz & Simone Bergonzoli & Consuelo Attolico & Luigi Pari, 2020. "Mechanical Harvesting of Camelina: Work Productivity, Costs and Seed Loss Evaluation," Energies, MDPI, vol. 13(20), pages 1-14, October.
    15. Angelo Del Giudice & Antonio Scarfone & Enrico Paris & Francesco Gallucci & Enrico Santangelo, 2022. "Harvesting Wood Residues for Energy Production from an Oak Coppice in Central Italy," Energies, MDPI, vol. 15(24), pages 1-13, December.
    16. Ascher, Simon & Watson, Ian & Wang, Xiaonan & You, Siming, 2019. "Township-based bioenergy systems for distributed energy supply and efficient household waste re-utilisation: Techno-economic and environmental feasibility," Energy, Elsevier, vol. 181(C), pages 455-467.
    17. Weremczuk, Arkadiusz, 2023. "The Energy Potential of Agricultural Biomass in the European Union," Problems of World Agriculture / Problemy Rolnictwa Światowego, Warsaw University of Life Sciences, vol. 23(4), December.
    18. Stolarski, Mariusz J. & Stachowicz, Paweł & Dudziec, Paweł, 2022. "Wood pellet quality depending on dendromass species," Renewable Energy, Elsevier, vol. 199(C), pages 498-508.
    19. Lauri, Pekka & Havlík, Petr & Kindermann, Georg & Forsell, Nicklas & Böttcher, Hannes & Obersteiner, Michael, 2014. "Woody biomass energy potential in 2050," Energy Policy, Elsevier, vol. 66(C), pages 19-31.
    20. Ewelina Olba-Zięty & Mariusz Jerzy Stolarski & Michał Krzyżaniak & Kazimierz Warmiński, 2020. "Willow Cultivation as Feedstock for Bioenergy-External Production Cost," Energies, MDPI, vol. 13(18), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4985-:d:417550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.