IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4937-d416480.html
   My bibliography  Save this article

Experimental Study on Coal Gasification in a Full-Scale Two-Stage Entrained-Flow Gasifier

Author

Listed:
  • Guangyu Li

    (State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China)

  • Luping Wang

    (State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China)

  • Chaowei Wang

    (State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Chang’an Wang

    (State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Ping Wu

    (China Huaneng Tianjin IGCC CO., LTD, 2218 Huaihe Avenue, Lingang Economic Districit, Tianjin 300452, China)

  • Defu Che

    (State Key Laboratory of Multiphase Flow in Power Engineering, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract

In this paper, coal gasification characteristics in the reductor were investigated in a full-scale two-stage pressurized entrained-flow gasifier, which has been seldom conducted previously. The present study aimed at elucidating the effects of gasifying agent concentration, coal input rate, and operation period under full reductor load on the performance of a utility two-stage pressurized entrained-flow gasifier for the first time. When the steam input in the combustor was raised from 3318 kg/h to 5722 kg/h, the total outputs of H 2 , CO, and CO 2 were increased by 1765 Nm 3 /h and 2063 Nm 3 /h, respectively, while the CH 4 output was decreased by 49 Nm 3 /h. The coal conversion rate was minimal at low steam input. In addition, more coal gasified in the reductor could increase the output of CH 4 , while CH 4 could reach 1.24% with the coal input in the range of 8000–10,000 kg/h. The present work can offer a further understanding of the gasification performance in the reductor of the full-scale two-stage pressurized entrained-flow gasifier, and motivates the potential for clean utilization of coal resource.

Suggested Citation

  • Guangyu Li & Luping Wang & Chaowei Wang & Chang’an Wang & Ping Wu & Defu Che, 2020. "Experimental Study on Coal Gasification in a Full-Scale Two-Stage Entrained-Flow Gasifier," Energies, MDPI, vol. 13(18), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4937-:d:416480
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4937/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4937/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Barbara Bielowicz, 2020. "Petrographic Characteristics of Coal Gasification and Combustion by-Products from High Volatile Bituminous Coal," Energies, MDPI, vol. 13(17), pages 1-24, August.
    2. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.
    3. Jinzhi Zhang & Zhiqi Wang & Ruidong Zhao & Jinhu Wu, 2020. "Gasification of Shenhua Bituminous Coal with CO 2 : Effect of Coal Particle Size on Kinetic Behavior and Ash Fusibility," Energies, MDPI, vol. 13(13), pages 1-10, June.
    4. Niu, Miaomiao & Huang, Yaji & Jin, Baosheng & Liang, Shaohua & Dong, Qing & Gu, Haiming & Sun, Rongyue, 2019. "A novel two-stage enriched air biomass gasification for producing low-tar high heating value fuel gas: Pilot verification and performance analysis," Energy, Elsevier, vol. 173(C), pages 511-522.
    5. Jeong, Yong-Seong & Choi, Young-Kon & Park, Ki-Bum & Kim, Joo-Sik, 2019. "Air co-gasification of coal and dried sewage sludge in a two-stage gasifier: Effect of blending ratio on the producer gas composition and tar removal," Energy, Elsevier, vol. 185(C), pages 708-716.
    6. Watanabe, Hiroaki & Ahn, Seongyool & Tanno, Kenji, 2017. "Numerical investigation of effects of CO2 recirculation in an oxy-fuel IGCC on gasification characteristics of a two-stage entrained flow coal gasifier," Energy, Elsevier, vol. 118(C), pages 181-189.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chiawei Chang & Yishun Chen & Litsung Sheng & Shusan Hsiau, 2021. "A New Approach of Dedusting for IGCC by a Two-Stage Moving Granular Bed Filter," Energies, MDPI, vol. 14(9), pages 1-15, April.
    2. Tomasz Janoszek & Wojciech Masny, 2021. "CFD Simulations of Allothermal Steam Gasification Process for Hydrogen Production," Energies, MDPI, vol. 14(6), pages 1-28, March.
    3. Marek Sciazko & Aleksander Sobolewski, 2021. "Special Issue [Energies] “Clean Utilization and Conversion Technology of Coal”," Energies, MDPI, vol. 14(15), pages 1-3, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Haopeng & Chen, Zhichao & Zhang, Bin & Zeng, Lingyan & Li, Zhengqi & Zhang, Xiaoyan & Fang, Neng & Liu, Xiaoying, 2019. "Thermal-calculation method for entrained-flow coal gasifiers," Energy, Elsevier, vol. 166(C), pages 373-379.
    2. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    3. Xiaobo Wang & Anqi Liu & Zengli Zhao & Haibin Li, 2020. "Experimental and Model Study on Raw Biomass Gasification Syngas Conditioning in a Molten NaOH-Na 2 CO 3 Mixture," Energies, MDPI, vol. 13(14), pages 1-16, July.
    4. Ouyang, Ziqu & Song, Wenhao & Li, Shiyuan & Liu, Jingzhang & Ding, Hongliang, 2020. "Experiment study on NOx emission characteristics of the ultra-low volatile fuel in a 2 MW novel pulverized fuel self-sustained preheating combustor," Energy, Elsevier, vol. 209(C).
    5. Santa Margarida Santos & Ana Carolina Assis & Leandro Gomes & Catarina Nobre & Paulo Brito, 2022. "Waste Gasification Technologies: A Brief Overview," Waste, MDPI, vol. 1(1), pages 1-26, December.
    6. Simona Di Fraia & M. Rakib Uddin, 2022. "Energy Recovery from Waste Paper and Deinking Sludge to Support the Demand of the Paper Industry: A Numerical Analysis," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    7. Alberto Carotenuto & Simona Di Fraia & Nicola Massarotti & Szymon Sobek & M. Rakib Uddin & Laura Vanoli & Sebastian Werle, 2023. "Sewage Sludge Gasification Process Optimization for Combined Heat and Power Generation," Energies, MDPI, vol. 16(12), pages 1-22, June.
    8. Carotenuto, Alberto & Di Fraia, Simona & Massarotti, Nicola & Sobek, Szymon & Uddin, M. Rakib & Vanoli, Laura & Werle, Sebastian, 2023. "Predictive modeling for energy recovery from sewage sludge gasification," Energy, Elsevier, vol. 263(PB).
    9. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    10. Li, Fenghai & Li, Zhenzhu & Huang, Jiejie & Fang, Yitian, 2014. "Understanding mineral behaviors during anthracite fluidized-bed gasification based on slag characteristics," Applied Energy, Elsevier, vol. 131(C), pages 279-287.
    11. Singh, Deepak Kumar & Tirkey, Jeewan Vachan, 2022. "Performance optimization through response surface methodology of an integrated coal gasification and CI engine fuelled with diesel and low-grade coal-based producer gas," Energy, Elsevier, vol. 238(PC).
    12. Li, Tian & Niu, Yanqing & Wang, Liang & Shaddix, Christopher & Løvås, Terese, 2018. "High temperature gasification of high heating-rate chars using a flat-flame reactor," Applied Energy, Elsevier, vol. 227(C), pages 100-107.
    13. Jeong, Yong-Seong & Kim, Jong-Woo & Seo, Myung-Won & Mun, Tae-Young & Kim, Joo-Sik, 2021. "Characteristics of two-stage air gasification of polystyrene with active carbon as a tar removal agent," Energy, Elsevier, vol. 219(C).
    14. Chen, Xiaodong & Kong, Lingxue & Bai, Jin & Dai, Xin & Li, Huaizhu & Bai, Zongqing & Li, Wen, 2017. "The key for sodium-rich coal utilization in entrained flow gasifier: The role of sodium on slag viscosity-temperature behavior at high temperatures," Applied Energy, Elsevier, vol. 206(C), pages 1241-1249.
    15. Ishii, Hiromi & Hayashi, Tomoya & Tada, Hiroaki & Yokohama, Katsuhiko & Takashima, Ryuhei & Hayashi, Jun-ichiro, 2019. "Critical assessment of oxy-fuel integrated coal gasification combined cycles," Applied Energy, Elsevier, vol. 233, pages 156-169.
    16. Wu, Zhicong & Zhang, Ziyue & Xu, Gang & Ge, Shiyu & Xue, Xiaojun & Chen, Heng, 2024. "Thermodynamic and economic analysis of a new methanol synthesis system coupled with a biomass integrated gasification combined cycle," Energy, Elsevier, vol. 300(C).
    17. Luo, Yimo & Shao, Shuangquan & Xu, Hongbo & Tian, Changqing & Yang, Hongxing, 2014. "Experimental and theoretical research of a fin-tube type internally-cooled liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 133(C), pages 127-134.
    18. Mahapatro, Abinash & Mahanta, Pinakeswar, 2020. "Gasification studies of low-grade Indian coal and biomass in a lab-scale pressurized circulating fluidized bed," Renewable Energy, Elsevier, vol. 150(C), pages 1151-1159.
    19. Lian, Ming-lei & Li, Shuai & Wu, Wen-fang & Li, Lin & Miao, Ying-ju & Ge, Yuan, 2023. "Graphite-assisted microwave carbon dioxide gasification of wet stalks," Renewable Energy, Elsevier, vol. 219(P1).
    20. Sajid, Muhammad & Raheem, Abdul & Ullah, Naeem & Asim, Muhammad & Ur Rehman, Muhammad Saif & Ali, Nisar, 2022. "Gasification of municipal solid waste: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4937-:d:416480. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.