IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v209y2020ics0360544220315565.html
   My bibliography  Save this article

Experiment study on NOx emission characteristics of the ultra-low volatile fuel in a 2 MW novel pulverized fuel self-sustained preheating combustor

Author

Listed:
  • Ouyang, Ziqu
  • Song, Wenhao
  • Li, Shiyuan
  • Liu, Jingzhang
  • Ding, Hongliang

Abstract

The pyrolysis semi-coke, with ultra-low volatile content, is difficult to burn effectively with conventional combustion technology. In this research, a 2 MW novel self-sustained preheating combustion test rig was constructed. Efforts were made to investigate the effects of secondary air ratio, the air staging degree of preheated fuel burner, and the position of tertiary air on the combustion characteristics and NOx emissions of semi-coke. The results showed that NOx emission was reduced to 67 mg/Nm3 (@6% O2) with a combustion efficiency of 99.2%. The internal fluidized bed combustor (IFBC) could provide high-temperature preheated fuel for the combustion chamber steadily. Also, 69.3% of the fuel-bound nitrogen was released in the IFBC. The temperature distribution in the combustion chamber became uniform under the multi-layer arrangement of tertiary air. As the secondary air ratio decreased from 0.50 to 0.40, NOx emissions decreased due to the enhancement of reducing atmosphere in the reducing zone. Besides, the deeper air staging of the preheated fuel burner contributed to forming a region of low oxygen and strong reducibility at the early staged combustion, which could inhibit the generation of NOx. The strong mixing and long dwell time in the reducing zone were essential for the reduction of NOx emissions. The multi-layer and delayed arrangement of tertiary air could reduce NOx emissions significantly.

Suggested Citation

  • Ouyang, Ziqu & Song, Wenhao & Li, Shiyuan & Liu, Jingzhang & Ding, Hongliang, 2020. "Experiment study on NOx emission characteristics of the ultra-low volatile fuel in a 2 MW novel pulverized fuel self-sustained preheating combustor," Energy, Elsevier, vol. 209(C).
  • Handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220315565
    DOI: 10.1016/j.energy.2020.118448
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544220315565
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2020.118448?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Junchao & Fan, Weidong & Li, Yu & Xiao, Meng & Wang, Kang & Ren, Peng, 2012. "The effect of air staged combustion on NOx emissions in dried lignite combustion," Energy, Elsevier, vol. 37(1), pages 725-736.
    2. Chen, Zhichao & Wang, Qingxiang & Zhang, Xiaoyan & Zeng, Lingyan & Zhang, Xin & He, Tao & Liu, Tao & Li, Zhengqi, 2017. "Industrial-scale investigations of anthracite combustion characteristics and NOx emissions in a retrofitted 300 MWe down-fired utility boiler with swirl burners," Applied Energy, Elsevier, vol. 202(C), pages 169-177.
    3. Wang, Qingxiang & Chen, Zhichao & Wang, Liang & Zeng, Lingyan & Li, Zhengqi, 2018. "Application of eccentric-swirl-secondary-air combustion technology for high-efficiency and low-NOx performance on a large-scale down-fired boiler with swirl burners," Applied Energy, Elsevier, vol. 223(C), pages 358-368.
    4. Kuang, Min & Li, Zhengqi, 2014. "Review of gas/particle flow, coal combustion, and NOx emission characteristics within down-fired boilers," Energy, Elsevier, vol. 69(C), pages 144-178.
    5. Xu, Shisen & Ren, Yongqiang & Wang, Baomin & Xu, Yue & Chen, Liang & Wang, Xiaolong & Xiao, Tiancun, 2014. "Development of a novel 2-stage entrained flow coal dry powder gasifier," Applied Energy, Elsevier, vol. 113(C), pages 318-323.
    6. Hodžić, Nihad & Kazagić, Anes & Smajević, Izet, 2016. "Influence of multiple air staging and reburning on NOx emissions during co-firing of low rank brown coal with woody biomass and natural gas," Applied Energy, Elsevier, vol. 168(C), pages 38-47.
    7. Chen, Zhichao & Wang, Qingxiang & Wang, Bingnan & Zeng, Lingyan & Che, Miaomiao & Zhang, Xin & Li, Zhengqi, 2017. "Anthracite combustion characteristics and NOx formation of a 300MWe down-fired boiler with swirl burners at different loads after the implementation of a new combustion system," Applied Energy, Elsevier, vol. 189(C), pages 133-141.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Pengqian & Bai, Bo & Wang, Chang'an & Du, Yongbo & Wang, Chaowei & Che, Defu, 2023. "Experimental and kinetics study of NO heterogeneous reduction on semi-coke and its chars: Effects of high-temperature rapid pyrolysis and atmosphere," Energy, Elsevier, vol. 264(C).
    2. Qiao, Yanyu & Li, Song & Jing, Xinjing & Chen, Zhichao & Fan, Subo & Li, Zhengqi, 2022. "Combustion and NOx formation characteristics from a 330 MWe retrofitted anthracite-fired utility boiler with swirl burner under deeply-staged-combustion," Energy, Elsevier, vol. 258(C).
    3. Wang, Hongshuai & Ouyang, Ziqu & Ding, Hongliang & Su, Kun & Zhang, Jinyang & Hu, Yujie, 2024. "Experimental study on the flexible peak shaving with pulverized coal self-preheating technology under load variability," Energy, Elsevier, vol. 289(C).
    4. Wang, Wenyu & Li, Wei & Liang, Chen & Lu, Yu & Guo, Shuai & Ren, Qiangqiang, 2024. "Resource utilization of gasified fine ash from entrained flow bed via thermal modification-melting combustion: A pilot study," Energy, Elsevier, vol. 299(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Qingxiang & Chen, Zhichao & Han, Hui & Zeng, Lingyan & Li, Zhengqi, 2019. "Experimental characterization of anthracite combustion and NOx emission for a 300-MWe down-fired boiler with a novel combustion system: Influence of primary and vent air distributions," Applied Energy, Elsevier, vol. 238(C), pages 1551-1562.
    2. Wang, Qingxiang & Chen, Zhichao & Wang, Liang & Zeng, Lingyan & Li, Zhengqi, 2018. "Application of eccentric-swirl-secondary-air combustion technology for high-efficiency and low-NOx performance on a large-scale down-fired boiler with swirl burners," Applied Energy, Elsevier, vol. 223(C), pages 358-368.
    3. Ti, Shuguang & Chen, Zhichao & Li, Zhengqi & Kuang, Min & Xu, Guangyin & Lai, Jinping & Wang, Zhenfeng, 2018. "Influence of primary air cone length on combustion characteristics and NOx emissions of a swirl burner from a 0.5 MW pulverized coal-fired furnace with air staging," Applied Energy, Elsevier, vol. 211(C), pages 1179-1189.
    4. Ma, Lun & Fang, Qingyan & Yin, Chungen & Wang, Huajian & Zhang, Cheng & Chen, Gang, 2019. "A novel corner-fired boiler system of improved efficiency and coal flexibility and reduced NOx emissions," Applied Energy, Elsevier, vol. 238(C), pages 453-465.
    5. Kuang, Min & Yang, Guohua & Zhu, Qunyi & Ti, Shuguang & Wang, Zhenfeng, 2017. "Effect of burner location on flow-field deflection and asymmetric combustion in a 600MWe supercritical down-fired boiler," Applied Energy, Elsevier, vol. 206(C), pages 1393-1405.
    6. Zhang, Qunli & Niu, Yu & Yang, Xiaohu & Sun, Donghan & Xiao, Xin & Shen, Qi & Wang, Gang, 2020. "Experimental study of flue gas condensing heat recovery synergized with low NOx emission system," Applied Energy, Elsevier, vol. 269(C).
    7. Chen, Zhichao & Wang, Qingxiang & Zhang, Xiaoyan & Zeng, Lingyan & Zhang, Xin & He, Tao & Liu, Tao & Li, Zhengqi, 2017. "Industrial-scale investigations of anthracite combustion characteristics and NOx emissions in a retrofitted 300 MWe down-fired utility boiler with swirl burners," Applied Energy, Elsevier, vol. 202(C), pages 169-177.
    8. Zhang, Xin & Chen, Zhichao & Hou, Jian & Liu, Zheng & Zeng, Lingyan & Li, Zhengqi, 2022. "Evaluation of wide-range coal combustion performance of a novel down-fired combustion technology based on gas–solid two-phase flow characteristics," Energy, Elsevier, vol. 248(C).
    9. Wu, Haiqian & Kuang, Min & Wang, Jialin & Zhao, Xiaojuan & Yang, Guohua & Ti, Shuguang & Ding, Jieyi, 2020. "Lower-arch location effect on the flow field, coal combustion, and NOx formation characteristics in a cascade-arch, down-fired furnace," Applied Energy, Elsevier, vol. 268(C).
    10. Chen, Zhichao & Qiao, Yanyu & Guan, Shuo & Wang, Zhenwang & Zheng, Yu & Zeng, Lingyan & Li, Zhengqi, 2022. "Effect of inner and outer secondary air ratios on ignition, C and N conversion process of pulverized coal in swirl burner under sub-stoichiometric ratio," Energy, Elsevier, vol. 239(PD).
    11. Wang, Qingxiang & Chen, Zhichao & Wang, Jiaquan & Zeng, Lingyan & Zhang, Xin & Li, Xiaoguang & Li, Zhengqi, 2018. "Effects of secondary air distribution in primary combustion zone on combustion and NOx emissions of a large-scale down-fired boiler with air staging," Energy, Elsevier, vol. 165(PB), pages 399-410.
    12. Ti, Shuguang & Kuang, Min & Wang, Haopeng & Xu, Guangyin & Niu, Cong & Liu, Yannan & Wang, Zhenfeng, 2020. "Experimental combustion characteristics and NOx emissions at 50% of the full load for a 600-MWe utility boiler: Effects of the coal feed rate for various mills," Energy, Elsevier, vol. 196(C).
    13. Kuang, Min & Wu, Haiqian & Zhu, Qunyi & Ti, Shuguang, 2018. "Establishing an overall symmetrical combustion setup for a 600 MWe supercritical down-fired boiler: A numerical and cold-modeling experimental verification," Energy, Elsevier, vol. 147(C), pages 208-225.
    14. Li, Zixiang & Qiao, Xinqi & Miao, Zhengqing, 2021. "A novel burner arrangement scheme with annularly combined multiple airflows for wall-tangentially fired pulverized coal boiler," Energy, Elsevier, vol. 222(C).
    15. Zeng, Guang & Xu, Mingchen & Tu, Yaojie & Li, Zhenwei & Cai, Yongtie & Zheng, Zhimin & Tay, Kunlin & Yang, Wenming, 2020. "Influences of initial coal concentration on ignition behaviors of low-NOx bias combustion technology," Applied Energy, Elsevier, vol. 278(C).
    16. Kuang, Min & Zhu, Qunyi & Ling, Zhongqian & Ti, Shuguang & Li, Zhengqi, 2017. "Improving gas/particle flow deflection and asymmetric combustion of a 600 MWe supercritical down-fired boiler by increasing its upper furnace height," Energy, Elsevier, vol. 127(C), pages 581-593.
    17. Choi, Minsung & Park, Yeseul & Li, Xinzhuo & Kim, Kibeom & Sung, Yonmo & Hwang, Taegam & Choi, Gyungmin, 2021. "Numerical evaluation of pulverized coal swirling flames and NOx emissions in a coal-fired boiler: Effects of co- and counter-swirling flames and coal injection modes," Energy, Elsevier, vol. 217(C).
    18. Li, Zhengqi & Liu, Zheng & Huang, Haolin & Du, He & Chen, Zhichao, 2024. "The effects of key parameters on the gas/particle flows characteristics in the furnace of a Foster Wheeler down-fired boiler retrofitted with novel low-load stable combustion technology," Energy, Elsevier, vol. 288(C).
    19. Wang, Jialin & Kuang, Min & Zhao, Xiaojuan & Wu, Haiqian & Ti, Shuguang & Chen, Chuyang & Jiao, Long, 2020. "Trends of the low-NOx and high-burnout combustion characteristics in a cascade-arch, W-shaped flame furnace regarding with the staged-air angle," Energy, Elsevier, vol. 212(C).
    20. Jiang, Yu & Lee, Byoung-Hwa & Oh, Dong-Hun & Jeon, Chung-Hwan, 2022. "Influence of various air-staging on combustion and NOX emission characteristics in a tangentially fired boiler under the 50% load condition," Energy, Elsevier, vol. 244(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:209:y:2020:i:c:s0360544220315565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.