IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2534-d545298.html
   My bibliography  Save this article

A New Approach of Dedusting for IGCC by a Two-Stage Moving Granular Bed Filter

Author

Listed:
  • Chiawei Chang

    (Department of Mechanical Engineering, National Central University, Zhongli District, Taoyuan City 320317, Taiwan)

  • Yishun Chen

    (Department of Mechanical Engineering, Oriental Institute of Technology, Banciao District, New Taipei City 22061, Taiwan)

  • Litsung Sheng

    (Department of Mechanical Engineering, National Central University, Zhongli District, Taoyuan City 320317, Taiwan)

  • Shusan Hsiau

    (Department of Mechanical Engineering, National Central University, Zhongli District, Taoyuan City 320317, Taiwan
    Graduate Institute of Energy Engineering, National Central University, Zhongli District, Taoyuan City 320317, Taiwan)

Abstract

We propose a dust removal technology in which a two-stage moving granular bed filter was employed using coarse and fine filtering granules. The pressure drop, collection efficiency, and dust particulate size distributions were investigated using various mass flow rates for coarse and fine granules at room temperature. In addition, the ratio of mass consumption was used to reveal the actual mass flow. The ratio of mass consumption influenced the pressure drop, collection efficiency, and dust particulate size distributions. Particulates larger than 1.775 μm were removed by the filter. Our results showed that a mass flow of 330 g/min for coarse granules and a mass flow of 1100 g/min for fine granules provided optimal collection efficiency and particulate size distribution. The proposed design can aid the development of high-temperature systems in power plants.

Suggested Citation

  • Chiawei Chang & Yishun Chen & Litsung Sheng & Shusan Hsiau, 2021. "A New Approach of Dedusting for IGCC by a Two-Stage Moving Granular Bed Filter," Energies, MDPI, vol. 14(9), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2534-:d:545298
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2534/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2534/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Takeharu Hasegawa, 2010. "Gas Turbine Combustion and Ammonia Removal Technology of Gasified Fuels," Energies, MDPI, vol. 3(3), pages 1-115, March.
    2. Melchior, Tobias & Madlener, Reinhard, 2012. "Economic evaluation of IGCC plants with hot gas cleaning," Applied Energy, Elsevier, vol. 97(C), pages 170-184.
    3. Guangyu Li & Luping Wang & Chaowei Wang & Chang’an Wang & Ping Wu & Defu Che, 2020. "Experimental Study on Coal Gasification in a Full-Scale Two-Stage Entrained-Flow Gasifier," Energies, MDPI, vol. 13(18), pages 1-15, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bernstein, Ronald & Madlener, Reinhard, 2011. "Responsiveness of Residential Electricity Demand in OECD Countries: A Panel Cointegation and Causality Analysis," FCN Working Papers 8/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    2. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    3. Tomasz Janoszek & Wojciech Masny, 2021. "CFD Simulations of Allothermal Steam Gasification Process for Hydrogen Production," Energies, MDPI, vol. 14(6), pages 1-28, March.
    4. Harmsen - van Hout, Marjolein & Ghosh, Gaurav & Madlener, Reinhard, 2013. "The Impact of Green Framing on Consumers’ Valuations of Energy-Saving Measures," FCN Working Papers 7/2013, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    5. Dergiades, Theologos & Madlener, Reinhard & Christofidou, Georgia, 2018. "The nexus between natural gas spot and futures prices at NYMEX: Do weather shocks and non-linear causality in low frequencies matter?," The Journal of Economic Asymmetries, Elsevier, vol. 18(C), pages 1-1.
    6. Moon, Dong-Kyu & Lee, Dong-Geun & Lee, Chang-Ha, 2016. "H2 pressure swing adsorption for high pressure syngas from an integrated gasification combined cycle with a carbon capture process," Applied Energy, Elsevier, vol. 183(C), pages 760-774.
    7. Cartelle Barros, Juan José & Lara Coira, Manuel & de la Cruz López, María Pilar & del Caño Gochi, Alfredo, 2015. "Assessing the global sustainability of different electricity generation systems," Energy, Elsevier, vol. 89(C), pages 473-489.
    8. Mansouri Majoumerd, Mohammad & Raas, Han & De, Sudipta & Assadi, Mohsen, 2014. "Estimation of performance variation of future generation IGCC with coal quality and gasification process – Simulation results of EU H2-IGCC project," Applied Energy, Elsevier, vol. 113(C), pages 452-462.
    9. Yan, Pei & Zheng, Chenghang & Zhu, Weizhuo & Xu, Xi & Gao, Xiang & Luo, Zhongyang & Ni, Mingjiang & Cen, Kefa, 2016. "An experimental study on the effects of temperature and pressure on negative corona discharge in high-temperature ESPs," Applied Energy, Elsevier, vol. 164(C), pages 28-35.
    10. Rohlfs, Wilko & Madlener, Reinhard, 2011. "Multi-Commodity Real Options Analysis of Power Plant Investments: Discounting Endogenous Risk Structures," FCN Working Papers 22/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    11. David Berstad & Geir Skaugen & Simon Roussanaly & Rahul Anantharaman & Petter Nekså & Kristin Jordal & Stian Trædal & Truls Gundersen, 2022. "CO 2 Capture from IGCC by Low-Temperature Synthesis Gas Separation," Energies, MDPI, vol. 15(2), pages 1-24, January.
    12. Wang, Hairong & Yan, Jianbo & Dong, Liang, 2016. "Simulation and economic evaluation of biomass gasification with sets for heating, cooling and power production," Renewable Energy, Elsevier, vol. 99(C), pages 360-368.
    13. Harmsen - van Hout, Marjolein & Ghosh, Gaurav & Madlener, Reinhard, 2013. "An Evaluation of Attribute Anchoring Bias in a Choice Experimental Setting," FCN Working Papers 6/2013, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    14. Marek Sciazko & Aleksander Sobolewski, 2021. "Special Issue [Energies] “Clean Utilization and Conversion Technology of Coal”," Energies, MDPI, vol. 14(15), pages 1-3, July.
    15. Michelsen, Carl Christian & Madlener, Reinhard, 2011. "Homeowners' Preferences for Adopting Residential Heating Systems: A Discrete Choice Analysis for Germany," FCN Working Papers 9/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    16. Cocco, Daniele & Serra, Fabio & Tola, Vittorio, 2013. "Assessment of energy and economic benefits arising from syngas storage in IGCC power plants," Energy, Elsevier, vol. 58(C), pages 635-643.
    17. Rohlfs, Wilko & Madlener, Reinhard, 2013. "Challenges in the Evaluation of Ultra-Long-Lived Projects: Risk Premia for Projects with Eternal Returns or Costs," FCN Working Papers 13/2013, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    18. Siefert, Nicholas S. & Litster, Shawn, 2013. "Exergy and economic analyses of advanced IGCC–CCS and IGFC–CCS power plants," Applied Energy, Elsevier, vol. 107(C), pages 315-328.
    19. Kraas, Birk & Schroedter-Homscheidt, Marion & Pulvermüller, Benedikt & Madlener, Reinhard, 2011. "Economic Assessment of a Concentrating Solar Power Forecasting System for Participation in the Spanish Electricity Market," FCN Working Papers 12/2011, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
    20. Hoon-Min Park & Dal-Hwan Yoon & Joon-Seong Lee & Hyun-Min Jung & Dae-Hee Lee & Dong-Hwan Jeon & Tae-Yeung Lim, 2024. "Implementation of Regenerative Thermal Oxidation Device Based on High-Heating Device for Low-Emission Combustion," Energies, MDPI, vol. 17(20), pages 1-14, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2534-:d:545298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.