IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4892-d415461.html
   My bibliography  Save this article

Machine Learning Techniques for Improving Self-Consumption in Renewable Energy Communities

Author

Listed:
  • Zacharie De Grève

    (Power Systems and Markets Research Group, University of Mons, 7000 Mons, Belgium)

  • Jérémie Bottieau

    (Power Systems and Markets Research Group, University of Mons, 7000 Mons, Belgium)

  • David Vangulick

    (ORES, Opérateur des Réseaux gaz et électricité, 1348 Louvain-la-Neuve, Belgium)

  • Aurélien Wautier

    (Power Systems and Markets Research Group, University of Mons, 7000 Mons, Belgium)

  • Pierre-David Dapoz

    (Power Systems and Markets Research Group, University of Mons, 7000 Mons, Belgium)

  • Adriano Arrigo

    (Power Systems and Markets Research Group, University of Mons, 7000 Mons, Belgium)

  • Jean-François Toubeau

    (Power Systems and Markets Research Group, University of Mons, 7000 Mons, Belgium)

  • François Vallée

    (Power Systems and Markets Research Group, University of Mons, 7000 Mons, Belgium)

Abstract

Renewable Energy Communities consist in an emerging decentralized market mechanism which allows local energy exchanges between end-users, bypassing the traditional wholesale/retail market structure. In that configuration, local consumers and prosumers gather in communities and can either cooperate or compete towards a common objective, such as the minimization of the electricity costs and/or the minimization of greenhouse gas emissions for instance. This paper proposes data analytics modules which aim at helping the community members to schedule the usage of their resources (generation and consumption) in order to minimize their electricity bill. A day-ahead local wind power forecasting algorithm, which relies on state-of-the-art Machine Learning techniques currently used in worldwide forecasting contests, is in that way proposed. We develop furthermore an original method to improve the performance of neural network forecasting models in presence of abnormal wind power data. A technique for computing representative profiles of the community members electricity consumption is also presented. The proposed techniques are tested and deployed operationally on a pilot Renewable Energy Community established on an Medium Voltage network in Belgium, involving 2.25 M W of wind and 18 Small and Medium Enterprises who had the possibility to freely access the results of the developed data modules by connecting to a dedicated web platform. We first show that our method for dealing with abnormal wind power data improves the forecasting accuracy by 10% in terms of Root Mean Square Error. The impact of the developed data modules on the consumption behaviour of the community members is then quantified, by analyzing the evolution of their monthly self-consumption and self-sufficiency during the pilot. No significant changes in the members behaviour, in relation with the information provided by the models, were observed in the recorded data. The pilot was however perturbed by the COVID-19 crisis which had a significant impact on the economic activity of the involved companies. We conclude by providing recommendations for the future set up of similar communities.

Suggested Citation

  • Zacharie De Grève & Jérémie Bottieau & David Vangulick & Aurélien Wautier & Pierre-David Dapoz & Adriano Arrigo & Jean-François Toubeau & François Vallée, 2020. "Machine Learning Techniques for Improving Self-Consumption in Renewable Energy Communities," Energies, MDPI, vol. 13(18), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4892-:d:415461
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4892/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4892/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong, Tao & Xie, Jingrui & Black, Jonathan, 2019. "Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1389-1399.
    2. Le Cadre, Hélène & Jacquot, Paulin & Wan, Cheng & Alasseur, Clémence, 2020. "Peer-to-peer electricity market analysis: From variational to Generalized Nash Equilibrium," European Journal of Operational Research, Elsevier, vol. 282(2), pages 753-771.
    3. Yael Parag & Benjamin K. Sovacool, 2016. "Electricity market design for the prosumer era," Nature Energy, Nature, vol. 1(4), pages 1-6, April.
    4. Abada, I. & Ehrenmann, A. & Lambin, X., 2018. "Unintended consequences: The snowball effect of energy communities," Cambridge Working Papers in Economics 1828, Faculty of Economics, University of Cambridge.
    5. Abada, Ibrahim & Ehrenmann, Andreas & Lambin, Xavier, 2020. "Unintended consequences: The snowball effect of energy communities," Energy Policy, Elsevier, vol. 143(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniela Proto, 2022. "Renewable Energy Communities as an Enabling Framework to Boost Flexibility and Promote the Energy Transition," Energies, MDPI, vol. 15(23), pages 1-4, November.
    2. Behnam Talebjedi & Ali Khosravi & Timo Laukkanen & Henrik Holmberg & Esa Vakkilainen & Sanna Syri, 2020. "Energy Modeling of a Refiner in Thermo-Mechanical Pulping Process Using ANFIS Method," Energies, MDPI, vol. 13(19), pages 1-26, October.
    3. Di Silvestre, Maria Luisa & Ippolito, Mariano Giuseppe & Sanseverino, Eleonora Riva & Sciumè, Giuseppe & Vasile, Antony, 2021. "Energy self-consumers and renewable energy communities in Italy: New actors of the electric power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Victor I. Espinosa & José Antonio Peña-Ramos & Fátima Recuero-López, 2021. "The Political Economy of Rent-Seeking: Evidence from Spain’s Support Policies for Renewable Energy," Energies, MDPI, vol. 14(14), pages 1-16, July.
    5. Mustika, Alyssa Diva & Rigo-Mariani, Rémy & Debusschere, Vincent & Pachurka, Amaury, 2022. "A two-stage management strategy for the optimal operation and billing in an energy community with collective self-consumption," Applied Energy, Elsevier, vol. 310(C).
    6. Jakub Jasiński & Mariusz Kozakiewicz & Maciej Sołtysik, 2021. "Determinants of Energy Cooperatives’ Development in Rural Areas—Evidence from Poland," Energies, MDPI, vol. 14(2), pages 1-19, January.
    7. Fernando V. Cerna & Mahdi Pourakbari-Kasmaei & Luizalba S. S. Pinheiro & Ehsan Naderi & Matti Lehtonen & Javier Contreras, 2021. "Intelligent Energy Management in a Prosumer Community Considering the Load Factor Enhancement," Energies, MDPI, vol. 14(12), pages 1-24, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Yuekuan & Lund, Peter D., 2023. "Peer-to-peer energy sharing and trading of renewable energy in smart communities ─ trading pricing models, decision-making and agent-based collaboration," Renewable Energy, Elsevier, vol. 207(C), pages 177-193.
    2. Barbara Antonioli Mantegazzini & C?dric Clastres & Laura Wangen, 2022. "Energy communities in Europe: An overview of issues and regulatory and economic solutions," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2022(2), pages 5-23.
    3. Cortade, Thomas & Poudou, Jean-Christophe, 2022. "Peer-to-peer energy platforms: Incentives for prosuming," Energy Economics, Elsevier, vol. 109(C).
    4. Faia, Ricardo & Lezama, Fernando & Soares, João & Pinto, Tiago & Vale, Zita, 2024. "Local electricity markets: A review on benefits, barriers, current trends and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Tsaousoglou, Georgios & Giraldo, Juan S. & Paterakis, Nikolaos G., 2022. "Market Mechanisms for Local Electricity Markets: A review of models, solution concepts and algorithmic techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    7. Hildebrandt, Benjamin & Hurink, Johann & Manitz, Michael, 2024. "Local energy management: A base model for the optimization of virtual economic units," Energy Economics, Elsevier, vol. 129(C).
    8. Roman Le Goff Latimier & H. Ben Ahmed, 2023. "Peer to peer electricity markets," Post-Print hal-04268639, HAL.
    9. Carattini, Stefano & Gillingham, Kenneth & Meng, Xiangyu & Yoeli, Erez, 2024. "Peer-to-peer solar and social rewards: Evidence from a field experiment," Journal of Economic Behavior & Organization, Elsevier, vol. 219(C), pages 340-370.
    10. Monika Zimmermann & Florian Ziel, 2024. "Efficient mid-term forecasting of hourly electricity load using generalized additive models," Papers 2405.17070, arXiv.org.
    11. Mukherjee, Monish & Hardy, Trevor & Fuller, Jason C. & Bose, Anjan, 2022. "Implementing multi-settlement decentralized electricity market design for transactive communities with imperfect communication," Applied Energy, Elsevier, vol. 306(PA).
    12. Park, Sung-Won & Zhang, Zhong & Li, Furong & Son, Sung-Yong, 2021. "Peer-to-peer trading-based efficient flexibility securing mechanism to support distribution system stability," Applied Energy, Elsevier, vol. 285(C).
    13. Azim, M. Imran & Tushar, Wayes & Saha, Tapan K., 2021. "Cooperative negawatt P2P energy trading for low-voltage distribution networks," Applied Energy, Elsevier, vol. 299(C).
    14. Nitsch, Felix & Deissenroth-Uhrig, Marc & Schimeczek, Christoph & Bertsch, Valentin, 2021. "Economic evaluation of battery storage systems bidding on day-ahead and automatic frequency restoration reserves markets," Applied Energy, Elsevier, vol. 298(C).
    15. Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
    16. Wilkinson, Sam & Maticka, Martin J. & Liu, Yue & John, Michele, 2021. "The duck curve in a drying pond: The impact of rooftop PV on the Western Australian electricity market transition," Utilities Policy, Elsevier, vol. 71(C).
    17. Monyei, Chukwuka G. & Akpeji, Kingsley O. & Oladeji, Olamide & Babatunde, Olubayo M. & Aholu, Okechukwu C. & Adegoke, Damilola & Imafidon, Justus O., 2022. "Regional cooperation for mitigating energy poverty in Sub-Saharan Africa: A context-based approach through the tripartite lenses of access, sufficiency, and mobility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    18. Smyl, Slawek & Hua, N. Grace, 2019. "Machine learning methods for GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1424-1431.
    19. Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
    20. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Integrated prosumers–DSO approach applied in peer-to-peer energy and reserve tradings considering network constraints," Applied Energy, Elsevier, vol. 317(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4892-:d:415461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.