IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4849-d414558.html
   My bibliography  Save this article

Pyrolysis Conversion of Polymer Wastes to Noble Fuels in Conditions of the Slovak Republic

Author

Listed:
  • Michal Holubčík

    (Department of Power Engineering, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovakia)

  • Ivana Klačková

    (Department of Automation and Production systems, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovakia)

  • Peter Ďurčanský

    (Department of Power Engineering, Faculty of Mechanical Engineering, University of Žilina, Univerzitná 1, 010 26 Žilina, Slovakia)

Abstract

This paper deals with the pyrolysis conversion of synthetic waste materials into noble fuels, i.e., heating oils, gasoline, diesel, and carbon. The following article presents the principle and use of pyrolysis conversion of waste tires and plastics. The core of the paper is the determination of energy properties of noble fuels obtained from pyrolysis conversion and the possibility of their real use in industry. The aim of this paper is a technical-economic evaluation of the use of waste pyrolysis in practice in the Slovak Republic. Unlike various methods of waste management, there are also more efficient methods, which primarily have a positive effect on the ecology of our Earth and at the same time can be effectively used for the production of alternative fuels. One of these methods is the pyrolysis conversion of synthetic waste materials into noble fuels. It is an ecological, waste-free, economical, and economical disposal of waste with a full recovery of its energy and material components with reduced emissions, and therefore this direction of using synthetic waste for the conversion of alternative fuels contributes to sustainable development. A significant advantage of this waste management is considered to be the fact that only waste tires or chlorine-free plastics are used as input materials without other necessary raw materials obtained by other economic activity. Tires and plastics are generated daily as waste in every household.

Suggested Citation

  • Michal Holubčík & Ivana Klačková & Peter Ďurčanský, 2020. "Pyrolysis Conversion of Polymer Wastes to Noble Fuels in Conditions of the Slovak Republic," Energies, MDPI, vol. 13(18), pages 1-12, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4849-:d:414558
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4849/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4849/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Quesada, L. & Calero, M. & Martín-Lara, M.A. & Pérez, A. & Blázquez, G., 2019. "Characterization of fuel produced by pyrolysis of plastic film obtained of municipal solid waste," Energy, Elsevier, vol. 186(C).
    2. Panda, Achyut K. & Singh, R.K. & Mishra, D.K., 2010. "Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products--A world prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 233-248, January.
    3. Beatrice Beccagutti & Lorenzo Cafiero & Massimiliana Pietrantonio & Stefano Pucciarmati & Riccardo Tuffi & Stefano Vecchio Ciprioti, 2016. "Characterization of Some Real Mixed Plastics from WEEE: A Focus on Chlorine and Bromine Determination by Different Analytical Methods," Sustainability, MDPI, vol. 8(11), pages 1-17, October.
    4. Radovan Nosek & Maw Maw Tun & Dagmar Juchelkova, 2020. "Energy Utilization of Spent Coffee Grounds in the Form of Pellets," Energies, MDPI, vol. 13(5), pages 1-8, March.
    5. Martínez, Juan Daniel & Puy, Neus & Murillo, Ramón & García, Tomás & Navarro, María Victoria & Mastral, Ana Maria, 2013. "Waste tyre pyrolysis – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 179-213.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Campuzano, Felipe & Brown, Robert C. & Martínez, Juan Daniel, 2019. "Auger reactors for pyrolysis of biomass and wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 372-409.
    2. Jouhara, H. & Nannou, T.K. & Anguilano, L. & Ghazal, H. & Spencer, N., 2017. "Heat pipe based municipal waste treatment unit for home energy recovery," Energy, Elsevier, vol. 139(C), pages 1210-1230.
    3. Policella, Matteo & Wang, Zhiwei & Burra, Kiran. G. & Gupta, Ashwani K., 2019. "Characteristics of syngas from pyrolysis and CO2-assisted gasification of waste tires," Applied Energy, Elsevier, vol. 254(C).
    4. Fernanda Paula da Costa Assunção & Diogo Oliveira Pereira & Jéssica Cristina Conte da Silva & Jorge Fernando Hungria Ferreira & Kelly Christina Alves Bezerra & Lucas Pinto Bernar & Caio Campos Ferreir, 2022. "A Systematic Approach to Thermochemical Treatment of Municipal Household Solid Waste into Valuable Products: Analysis of Routes, Gravimetric Analysis, Pre-Treatment of Solid Mixtures, Thermochemical P," Energies, MDPI, vol. 15(21), pages 1-30, October.
    5. Kunwar, Bidhya & Cheng, H.N. & Chandrashekaran, Sriram R & Sharma, Brajendra K, 2016. "Plastics to fuel: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 421-428.
    6. Rumana Hossain & Md Tasbirul Islam & Riya Shanker & Debishree Khan & Katherine Elizabeth Sarah Locock & Anirban Ghose & Heinz Schandl & Rita Dhodapkar & Veena Sahajwalla, 2022. "Plastic Waste Management in India: Challenges, Opportunities, and Roadmap for Circular Economy," Sustainability, MDPI, vol. 14(8), pages 1-34, April.
    7. Choi, Gyung-Goo & Oh, Seung-Jin & Kim, Joo-Sik, 2016. "Non-catalytic pyrolysis of scrap tires using a newly developed two-stage pyrolyzer for the production of a pyrolysis oil with a low sulfur content," Applied Energy, Elsevier, vol. 170(C), pages 140-147.
    8. Shaik Anwar Ahamed Nabeela Nasreen & Subramanian Sundarrajan & Syed Abdulrahim Syed Nizar & He Wei & Dong Xuecheng & Seeram Ramakrishna, 2022. "Pyrolysis, Microwave, Chemical and Biodegradation Methodology in Recycling of Plastic Waste: a Circular Economy Concept," Circular Economy and Sustainability, Springer, vol. 2(2), pages 609-632, June.
    9. Pan, Ruming & Martins, Marcio Ferreira & Debenest, Gérald, 2022. "Optimization of oil production through ex-situ catalytic pyrolysis of waste polyethylene with activated carbon," Energy, Elsevier, vol. 248(C).
    10. Anna Matuszewska & Marlena Owczuk & Krzysztof Biernat, 2022. "Current Trends in Waste Plastics’ Liquefaction into Fuel Fraction: A Review," Energies, MDPI, vol. 15(8), pages 1-32, April.
    11. Hemant Ghai & Deepak Sakhuja & Shikha Yadav & Preeti Solanki & Chayanika Putatunda & Ravi Kant Bhatia & Arvind Kumar Bhatt & Sunita Varjani & Yung-Hun Yang & Shashi Kant Bhatia & Abhishek Walia, 2022. "An Overview on Co-Pyrolysis of Biodegradable and Non-Biodegradable Wastes," Energies, MDPI, vol. 15(11), pages 1-27, June.
    12. Lucía Quesada & Mónica Calero de Hoces & M. A. Martín-Lara & Germán Luzón & G. Blázquez, 2020. "Performance of Different Catalysts for the In Situ Cracking of the Oil-Waxes Obtained by the Pyrolysis of Polyethylene Film Waste," Sustainability, MDPI, vol. 12(13), pages 1-15, July.
    13. Zhang, Pengchao & Hu, Hongyun & Tang, Hua & Yang, Yuhan & Liu, Huan & Lu, Qiang & Li, Xian & Worasuwannarak, Nakorn & Yao, Hong, 2019. "In-depth experimental study of pyrolysis characteristics of raw and cooking treated shrimp shell samples," Renewable Energy, Elsevier, vol. 139(C), pages 730-738.
    14. Žvar Baškovič, Urban & Vihar, Rok & Seljak, Tine & Katrašnik, Tomaž, 2017. "Feasibility analysis of 100% tire pyrolysis oil in a common rail Diesel engine," Energy, Elsevier, vol. 137(C), pages 980-990.
    15. Zhang, Menghui & Qi, Yongfeng & Zhang, Wan & Wang, Meiting & Li, Jingyi & Lu, Yi & Zhang, Sheng & He, Jiazheng & Cao, Hao & Tao, Xuan & Xu, Hanlu & Zhang, Sheng, 2024. "A review on waste tires pyrolysis for energy and material recovery from the optimization perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    16. Subramanian, Avinash S.R. & Gundersen, Truls & Adams, Thomas A., 2021. "Optimal design and operation of a waste tire feedstock polygeneration system," Energy, Elsevier, vol. 223(C).
    17. Hita, Idoia & Arabiourrutia, Miriam & Olazar, Martin & Bilbao, Javier & Arandes, José María & Castaño, Pedro, 2016. "Opportunities and barriers for producing high quality fuels from the pyrolysis of scrap tires," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 745-759.
    18. Bhoi, P.R. & Ouedraogo, A.S. & Soloiu, V. & Quirino, R., 2020. "Recent advances on catalysts for improving hydrocarbon compounds in bio-oil of biomass catalytic pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    19. Zeaiter, Joseph & Azizi, Fouad & Lameh, Mohammad & Milani, Dia & Ismail, Hamza Y. & Abbas, Ali, 2018. "Waste tire pyrolysis using thermal solar energy: An integrated approach," Renewable Energy, Elsevier, vol. 123(C), pages 44-51.
    20. Martínez, Juan Daniel, 2021. "An overview of the end-of-life tires status in some Latin American countries: Proposing pyrolysis for a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4849-:d:414558. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.