IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v186y2019ics0360544219315464.html
   My bibliography  Save this article

Characterization of fuel produced by pyrolysis of plastic film obtained of municipal solid waste

Author

Listed:
  • Quesada, L.
  • Calero, M.
  • Martín-Lara, M.A.
  • Pérez, A.
  • Blázquez, G.

Abstract

The plastics have produced a lot of serious environmental problems because there are large quantities of which the majority ends up in landfills or even in the seas. In addition, they are produced from exhaustible fossil fuels. For these reasons, recycling plastics is an alternative which may reduce environmental problems and resource depletion. Currently, the most common technique used for chemical recycling of plastics is pyrolysis. In this work, the pyrolysis process was carried out on a plastic waste (polyethylene film) from the fraction not collected selectively, with the aim of obtaining a liquid fuel. Both physical and chemical characterization of different oil samples was performed, which were obtained under different operating conditions. The main objective was to determine the quality of the fuel and whether this quality depended on the operating conditions used. It was determined that the properties of the fuel studied do not vary depending on the operating conditions used. The physical and chemical characteristics of the oil samples were very similar to those of commercial fuels (gasoline and diesel), with the exception of viscosity because the fuel studied has not been fractionated and therefore has light and heavy naphthas.

Suggested Citation

  • Quesada, L. & Calero, M. & Martín-Lara, M.A. & Pérez, A. & Blázquez, G., 2019. "Characterization of fuel produced by pyrolysis of plastic film obtained of municipal solid waste," Energy, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:energy:v:186:y:2019:i:c:s0360544219315464
    DOI: 10.1016/j.energy.2019.115874
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219315464
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.115874?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Ruming & Martins, Marcio Ferreira & Debenest, Gérald, 2022. "Optimization of oil production through ex-situ catalytic pyrolysis of waste polyethylene with activated carbon," Energy, Elsevier, vol. 248(C).
    2. Lucía Quesada & Mónica Calero de Hoces & M. A. Martín-Lara & Germán Luzón & G. Blázquez, 2020. "Performance of Different Catalysts for the In Situ Cracking of the Oil-Waxes Obtained by the Pyrolysis of Polyethylene Film Waste," Sustainability, MDPI, vol. 12(13), pages 1-15, July.
    3. Gałko, Grzegorz & Mazur, Izabela & Rejdak, Michał & Jagustyn, Barbara & Hrabak, Joanna & Ouadi, Miloud & Jahangiri, Hessam & Sajdak, Marcin, 2023. "Evaluation of alternative refuse-derived fuel use as a valuable resource in various valorised applications," Energy, Elsevier, vol. 263(PD).
    4. Fernanda Paula da Costa Assunção & Diogo Oliveira Pereira & Jéssica Cristina Conte da Silva & Jorge Fernando Hungria Ferreira & Kelly Christina Alves Bezerra & Lucas Pinto Bernar & Caio Campos Ferreir, 2022. "A Systematic Approach to Thermochemical Treatment of Municipal Household Solid Waste into Valuable Products: Analysis of Routes, Gravimetric Analysis, Pre-Treatment of Solid Mixtures, Thermochemical P," Energies, MDPI, vol. 15(21), pages 1-30, October.
    5. Michal Holubčík & Ivana Klačková & Peter Ďurčanský, 2020. "Pyrolysis Conversion of Polymer Wastes to Noble Fuels in Conditions of the Slovak Republic," Energies, MDPI, vol. 13(18), pages 1-12, September.
    6. Saha, Dipankar & Roy, Bidesh, 2023. "Influence of areca nut husk nano-additive on combustion, performance, and emission characteristics of compression ignition engine fuelled with plastic-grocery-bag derived oil-water-diesel emulsion," Energy, Elsevier, vol. 268(C).
    7. Farihahusnah Hussin & Mohamed Kheireddine Aroua & Mohd Azlan Kassim & Umi Fazara Md. Ali, 2021. "Transforming Plastic Waste into Porous Carbon for Capturing Carbon Dioxide: A Review," Energies, MDPI, vol. 14(24), pages 1-22, December.
    8. Anna Matuszewska & Marlena Owczuk & Krzysztof Biernat, 2022. "Current Trends in Waste Plastics’ Liquefaction into Fuel Fraction: A Review," Energies, MDPI, vol. 15(8), pages 1-32, April.
    9. Wang, Shuang & Rodriguez Alejandro, David Aaron & Kim, Hana & Kim, Jae-Young & Lee, Yu-Ri & Nabgan, Walid & Hwang, Byung Wook & Lee, Doyeon & Nam, Hyungseok & Ryu, Ho-Jung, 2022. "Experimental investigation of plastic waste pyrolysis fuel and diesel blends combustion and its flue gas emission analysis in a 5 kW heater," Energy, Elsevier, vol. 247(C).
    10. Martin Pšenička & Anna Roudová & Aleš Vráblík & Radek Černý, 2022. "Pyrolysis Oils from Used Tires and Plastic Waste: A Comparison of a Co-Processing with Atmospheric Gas Oil," Energies, MDPI, vol. 15(20), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:186:y:2019:i:c:s0360544219315464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.