IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4817-d413784.html
   My bibliography  Save this article

An End-to-End, Real-Time Solution for Condition Monitoring of Wind Turbine Generators

Author

Listed:
  • Adrian Stetco

    (Department of Computer Science, University of Manchester, Manchester M13 9PL, UK)

  • Juan Melecio Ramirez

    (Department of Electrical and Electronic Engineering, University of Manchester, Manchester M1 3BB, UK)

  • Anees Mohammed

    (Department of Electrical and Electronic Engineering, University of Manchester, Manchester M1 3BB, UK)

  • Siniša Djurović

    (Department of Electrical and Electronic Engineering, University of Manchester, Manchester M1 3BB, UK)

  • Goran Nenadic

    (Department of Computer Science, University of Manchester, Manchester M13 9PL, UK)

  • John Keane

    (Department of Computer Science, University of Manchester, Manchester M13 9PL, UK)

Abstract

Data-driven wind generator condition monitoring systems largely rely on multi-stage processing involving feature selection and extraction followed by supervised learning. These stages require expert analysis, are potentially error-prone and do not generalize well between applications. In this paper, we introduce a collection of end-to-end Convolutional Neural Networks for advanced condition monitoring of wind turbine generators. End-to-end models have the benefit of utilizing raw, unstructured signals to make predictions about the parameters of interest. This feature makes it easier to scale an existing collection of models to new predictive tasks (e.g., new failure types) since feature extracting steps are not required. These automated models achieve low Mean Squared Errors in predicting the generator operational state (40.85 for Speed and 0.0018 for Load) and high accuracy in diagnosing rotor demagnetization failures (99.67%) by utilizing only raw current signals. We show how to create, deploy and run the collection of proposed models in a real-time setting using a laptop connected to a test rig via a data acquisition card. Based on a sampling rate of 5 kHz, predictions are stored in an efficient time series database and monitored using a dynamic visualization framework. We further discuss existing options for understanding the decision process behind the predictions made by the models.

Suggested Citation

  • Adrian Stetco & Juan Melecio Ramirez & Anees Mohammed & Siniša Djurović & Goran Nenadic & John Keane, 2020. "An End-to-End, Real-Time Solution for Condition Monitoring of Wind Turbine Generators," Energies, MDPI, vol. 13(18), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4817-:d:413784
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4817/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4817/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
    2. Kong, Ziqian & Tang, Baoping & Deng, Lei & Liu, Wenyi & Han, Yan, 2020. "Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units," Renewable Energy, Elsevier, vol. 146(C), pages 760-768.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Annalisa Santolamazza & Daniele Dadi & Vito Introna, 2021. "A Data-Mining Approach for Wind Turbine Fault Detection Based on SCADA Data Analysis Using Artificial Neural Networks," Energies, MDPI, vol. 14(7), pages 1-25, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Rita Nunes & Hugo Morais & Alberto Sardinha, 2021. "Use of Learning Mechanisms to Improve the Condition Monitoring of Wind Turbine Generators: A Review," Energies, MDPI, vol. 14(21), pages 1-22, November.
    2. Chatterjee, Joyjit & Dethlefs, Nina, 2021. "Scientometric review of artificial intelligence for operations & maintenance of wind turbines: The past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    3. Zhan, Jun & Wu, Chengkun & Yang, Canqun & Miao, Qiucheng & Wang, Shilin & Ma, Xiandong, 2022. "Condition monitoring of wind turbines based on spatial-temporal feature aggregation networks," Renewable Energy, Elsevier, vol. 200(C), pages 751-766.
    4. Pang, Yanhua & He, Qun & Jiang, Guoqian & Xie, Ping, 2020. "Spatio-temporal fusion neural network for multi-class fault diagnosis of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 161(C), pages 510-524.
    5. Li, Yanting & Wu, Zhenyu, 2020. "A condition monitoring approach of multi-turbine based on VAR model at farm level," Renewable Energy, Elsevier, vol. 166(C), pages 66-80.
    6. Chen Zhang & Tao Yang, 2023. "Anomaly Detection for Wind Turbines Using Long Short-Term Memory-Based Variational Autoencoder Wasserstein Generation Adversarial Network under Semi-Supervised Training," Energies, MDPI, vol. 16(19), pages 1-18, October.
    7. Reddy, Sohail R., 2021. "A machine learning approach for modeling irregular regions with multiple owners in wind farm layout design," Energy, Elsevier, vol. 220(C).
    8. Camila Correa-Jullian & Sergio Cofre-Martel & Gabriel San Martin & Enrique Lopez Droguett & Gustavo de Novaes Pires Leite & Alexandre Costa, 2022. "Exploring Quantum Machine Learning and Feature Reduction Techniques for Wind Turbine Pitch Fault Detection," Energies, MDPI, vol. 15(8), pages 1-29, April.
    9. Liu, Hui & Duan, Zhu & Chen, Chao, 2020. "Wind speed big data forecasting using time-variant multi-resolution ensemble model with clustering auto-encoder," Applied Energy, Elsevier, vol. 280(C).
    10. Ahmed Al-Ajmi & Yingzhao Wang & Siniša Djurović, 2021. "Wind Turbine Generator Controller Signals Supervised Machine Learning for Shaft Misalignment Fault Detection: A Doubly Fed Induction Generator Practical Case Study," Energies, MDPI, vol. 14(6), pages 1-15, March.
    11. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
    12. Chen, Wanqiu & Qiu, Yingning & Feng, Yanhui & Li, Ye & Kusiak, Andrew, 2021. "Diagnosis of wind turbine faults with transfer learning algorithms," Renewable Energy, Elsevier, vol. 163(C), pages 2053-2067.
    13. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Tan, Yong & Rao, Lei, 2022. "Anomaly detection and condition monitoring of wind turbine gearbox based on LSTM-FS and transfer learning," Renewable Energy, Elsevier, vol. 189(C), pages 90-103.
    14. Meng, Debiao & Yang, Shiyuan & Jesus, Abílio M.P. de & Zhu, Shun-Peng, 2023. "A novel Kriging-model-assisted reliability-based multidisciplinary design optimization strategy and its application in the offshore wind turbine tower," Renewable Energy, Elsevier, vol. 203(C), pages 407-420.
    15. Lorin Jenkel & Stefan Jonas & Angela Meyer, 2023. "Privacy-Preserving Fleet-Wide Learning of Wind Turbine Conditions with Federated Learning," Energies, MDPI, vol. 16(17), pages 1-29, September.
    16. Laura Schröder & Nikolay Krasimirov Dimitrov & David Robert Verelst & John Aasted Sørensen, 2022. "Using Transfer Learning to Build Physics-Informed Machine Learning Models for Improved Wind Farm Monitoring," Energies, MDPI, vol. 15(2), pages 1-21, January.
    17. Zhu, Yongchao & Zhu, Caichao & Tan, Jianjun & Wang, Yili & Tao, Jianquan, 2022. "Operational state assessment of wind turbine gearbox based on long short-term memory networks and fuzzy synthesis," Renewable Energy, Elsevier, vol. 181(C), pages 1167-1176.
    18. Cristian Velandia-Cardenas & Yolanda Vidal & Francesc Pozo, 2021. "Wind Turbine Fault Detection Using Highly Imbalanced Real SCADA Data," Energies, MDPI, vol. 14(6), pages 1-26, March.
    19. Lv, Yunlong & Hu, Qin & Xu, Hang & Lin, Huiyao & Wu, Yufan, 2024. "An ultra-short-term wind power prediction method based on spatial-temporal attention graph convolutional model," Energy, Elsevier, vol. 293(C).
    20. Zhang, Shuangyi & Li, Xichen, 2021. "Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method," Energy, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4817-:d:413784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.