Design Space Exploration of Turbulent Multiphase Flows Using Machine Learning-Based Surrogate Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Shields, Michael D. & Zhang, Jiaxin, 2016. "The generalization of Latin hypercube sampling," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 96-108.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Robert Keser & Alberto Ceschin & Michele Battistoni & Hong G. Im & Hrvoje Jasak, 2020. "Development of a Eulerian Multi-Fluid Solver for Dense Spray Applications in OpenFOAM," Energies, MDPI, vol. 13(18), pages 1-18, September.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Wang, Tianzhe & Chen, Zequan & Li, Guofa & He, Jialong & Liu, Chao & Du, Xuejiao, 2024. "A novel method for high-dimensional reliability analysis based on activity score and adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Qihong Feng & Kuankuan Wu & Jiyuan Zhang & Sen Wang & Xianmin Zhang & Daiyu Zhou & An Zhao, 2022. "Optimization of Well Control during Gas Flooding Using the Deep-LSTM-Based Proxy Model: A Case Study in the Baoshaceng Reservoir, Tarim, China," Energies, MDPI, vol. 15(7), pages 1-14, March.
- Quan Li & Xin Wang & Shuaiang Rong, 2018. "Probabilistic Load Flow Method Based on Modified Latin Hypercube-Important Sampling," Energies, MDPI, vol. 11(11), pages 1-14, November.
- Li, Jian & Dueñas-Osorio, Leonardo & Chen, Changkun & Shi, Congling, 2016. "Connectivity reliability and topological controllability of infrastructure networks: A comparative assessment," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 24-33.
- Xu, Jintao & Gui, Maolei & Ding, Rui & Dai, Tao & Zheng, Mengyan & Men, Xinhong & Meng, Fanpeng & Yu, Tao & Sui, Yang, 2023. "A new approach for dynamic reliability analysis of reactor protection system for HPR1000," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Shields, Michael D., 2018. "Adaptive Monte Carlo analysis for strongly nonlinear stochastic systems," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 207-224.
- Jiacheng Liu & Haiyun Liu & Cong Zhang & Jiyin Cao & Aibo Xu & Jiwei Hu, 2024. "Derivative-Variance Hybrid Global Sensitivity Measure with Optimal Sampling Method Selection," Mathematics, MDPI, vol. 12(3), pages 1-15, January.
- García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Wittek, Karsten, 2020. "Potential of hybrid powertrains in a variable compression ratio downsized turbocharged VVA Spark Ignition engine," Energy, Elsevier, vol. 195(C).
- Goda, Takashi, 2021. "A simple algorithm for global sensitivity analysis with Shapley effects," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
- Hau T. Mai & Jaewook Lee & Joowon Kang & H. Nguyen-Xuan & Jaehong Lee, 2022. "An Improved Blind Kriging Surrogate Model for Design Optimization Problems," Mathematics, MDPI, vol. 10(16), pages 1-19, August.
- Xie, Bin & Wang, Yanzhong & Zhu, Yunyi & Liu, Peng & Wu, Yu & Lu, Fengxia, 2024. "Time-variant reliability analysis of angular contact ball bearing considering the coupled effect of rolling contact fatigue damage and wear," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Hanye Xiong & Zhenzhong Shen & Yongchao Li & Yiqing Sun, 2024. "A Novel Inversion Method for Permeability Coefficients of Concrete Face Rockfill Dam Based on Sobol-IDBO-SVR Fusion Surrogate Model," Mathematics, MDPI, vol. 12(7), pages 1-19, April.
- Yinquan Yu & Yue Pan & Qiping Chen & Yiming Hu & Jian Gao & Zhao Zhao & Shuangxia Niu & Shaowei Zhou, 2023. "Multi-Objective Optimization Strategy for Permanent Magnet Synchronous Motor Based on Combined Surrogate Model and Optimization Algorithm," Energies, MDPI, vol. 16(4), pages 1-17, February.
- Shi, Yan & Lu, Zhenzhou & He, Ruyang & Zhou, Yicheng & Chen, Siyu, 2020. "A novel learning function based on Kriging for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
- Wang, Run-Zi & Gu, Hang-Hang & Zhu, Shun-Peng & Li, Kai-Shang & Wang, Ji & Wang, Xiao-Wei & Hideo, Miura & Zhang, Xian-Cheng & Tu, Shan-Tung, 2022. "A data-driven roadmap for creep-fatigue reliability assessment and its implementation in low-pressure turbine disk at elevated temperatures," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Zhou, Tong & Peng, Yongbo, 2022. "Reliability analysis using adaptive Polynomial-Chaos Kriging and probability density evolution method," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
- Okpokparoro, Salem & Sriramula, Srinivas, 2021. "Uncertainty modeling in reliability analysis of floating wind turbine support structures," Renewable Energy, Elsevier, vol. 165(P1), pages 88-108.
- Dang, Chao & Xu, Jun, 2020. "Unified reliability assessment for problems with low- to high-dimensional random inputs using the Laplace transform and a mixture distribution," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
- Sierra, Gina & Robinson, Elinirina I. & Goebel, Kai, 2021. "Improving tail accuracy of the predicted cumulative distribution function of time of failure," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
- Morzaria-Luna, Hem Nalini & Ainsworth, Cameron H. & Tarnecki, Joseph H. & Grüss, Arnaud, 2018. "Diet composition uncertainty determines impacts on fisheries following an oil spill," Ecosystem Services, Elsevier, vol. 33(PB), pages 187-198.
More about this item
Keywords
machine learning; large eddy simulation (LES); turbulent multiphase flows; gaussian processes;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4565-:d:408275. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.