IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4555-d407984.html
   My bibliography  Save this article

Mitigation of Over-Frequency through Optimal Allocation of BESS in a Low-Inertia Power System

Author

Listed:
  • Nahid-Al Masood

    (Department of EEE, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh)

  • Md. Nahid Haque Shazon

    (Department of EEE, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh)

  • Hasin Mussayab Ahmed

    (Department of EEE, Bangladesh University of Engineering and Technology, Dhaka 1205, Bangladesh)

  • Shohana Rahman Deeba

    (Department of Electrical and Computer Engineering, North South University, Dhaka 1229, Bangladesh)

Abstract

The primary objective of this paper is to alleviate the over-frequency problem in low-inertia power systems through optimal allocation of a Battery Energy Storage System (BESS). With prolific integration of wind power, conventional fossil-fuel driven synchronous generators are being replaced in the generation fleet. Variable speed wind machines are connected to the grid via power electronics converters. As such, these machines usually do not participate in frequency regulation. During high wind penetration, a generation-rich zone of an interconnected power system may face significant over-frequency following the loss of interconnection. If the frequency goes above a certain threshold, an Over-Frequency Generator Shedding (OFGS) scheme is activated. This may cause considerable amount of generation cut in a low-inertia power system. To address this challenge, this paper develops a siting and sizing methodology of frequency-responsive BESS to simultaneously maintain frequency and voltage stabilities. As such, BESS is placed at the most voltage-sensitive bus, determined by an index called reactive power margin. Furthermore, an optimization model is formulated to determine the BESS size to avoid generation shedding. The proposed technique is applied to a low-inertia power system, which resembles the equivalent high-voltage transmission network of South Australia. The simulation results reveal that the developed methodology successfully mitigates the over-frequency phenomenon. In addition, the proposed technique is found to be more effective than its counterpart (i.e., without BESS) to enhance the frequency resilience of a low-inertia grid.

Suggested Citation

  • Nahid-Al Masood & Md. Nahid Haque Shazon & Hasin Mussayab Ahmed & Shohana Rahman Deeba, 2020. "Mitigation of Over-Frequency through Optimal Allocation of BESS in a Low-Inertia Power System," Energies, MDPI, vol. 13(17), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4555-:d:407984
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4555/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4555/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abdulhameed S. Alsharafi & Ahmad H. Besheer & Hassan M. Emara, 2018. "Primary Frequency Response Enhancement for Future Low Inertia Power Systems Using Hybrid Control Technique," Energies, MDPI, vol. 11(4), pages 1-20, March.
    2. Dong Yu & Weiming Zhang & Jianlin Li & Weilin Yang & Dezhi Xu, 2020. "Disturbance Observer-Based Prescribed Performance Fault-Tolerant Control for a Multi-Area Interconnected Power System with a Hybrid Energy Storage System," Energies, MDPI, vol. 13(5), pages 1-15, March.
    3. Andrés Peña Asensio & Francisco Gonzalez-Longatt & Santiago Arnaltes & Jose Luis Rodríguez-Amenedo, 2020. "Analysis of the Converter Synchronizing Method for the Contribution of Battery Energy Storage Systems to Inertia Emulation," Energies, MDPI, vol. 13(6), pages 1-18, March.
    4. Yun-Su Kim & Chul-Sang Hwang & Eung-Sang Kim & Changhee Cho, 2016. "State of Charge-Based Active Power Sharing Method in a Standalone Microgrid with High Penetration Level of Renewable Energy Sources," Energies, MDPI, vol. 9(7), pages 1-13, June.
    5. Kazuya Sasaki & Zi-Jiang Yang, 2020. "Disturbance observer-based control of UAVs with prescribed performance," International Journal of Systems Science, Taylor & Francis Journals, vol. 51(5), pages 939-957, April.
    6. Muhammad Saeed Uz Zaman & Muhammad Irfan & Muhammad Ahmad & Manuel Mazzara & Chul-Hwan Kim, 2020. "Modeling the Impact of Modified Inertia Coefficient (H) due to ESS in Power System Frequency Response Analysis," Energies, MDPI, vol. 13(4), pages 1-18, February.
    7. Yan, Ruifeng & Saha, Tapan Kumar & Modi, Nilesh & Masood, Nahid-Al & Mosadeghy, Mehdi, 2015. "The combined effects of high penetration of wind and PV on power system frequency response," Applied Energy, Elsevier, vol. 145(C), pages 320-330.
    8. Guido Carpinelli & Anna Rita Di Fazio & Shahab Khormali & Fabio Mottola, 2014. "Optimal Sizing of Battery Storage Systems for Industrial Applications when Uncertainties Exist," Energies, MDPI, vol. 7(1), pages 1-20, January.
    9. Mohammed Atta Abdulgalil & Muhammad Khalid & Fahad Alismail, 2019. "Optimal Sizing of Battery Energy Storage for a Grid-Connected Microgrid Subjected to Wind Uncertainties," Energies, MDPI, vol. 12(12), pages 1-29, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shehzar Shahzad Sheikh & Mahnoor Anjum & Muhammad Abdullah Khan & Syed Ali Hassan & Hassan Abdullah Khalid & Adel Gastli & Lazhar Ben-Brahim, 2020. "A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach," Energies, MDPI, vol. 13(14), pages 1-16, July.
    2. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    3. Feras Alasali & Mohammad Salameh & Ali Semrin & Khaled Nusair & Naser El-Naily & William Holderbaum, 2022. "Optimal Controllers and Configurations of 100% PV and Energy Storage Systems for a Microgrid: The Case Study of a Small Town in Jordan," Sustainability, MDPI, vol. 14(13), pages 1-20, July.
    4. Lan, Hai & Wen, Shuli & Hong, Ying-Yi & Yu, David C. & Zhang, Lijun, 2015. "Optimal sizing of hybrid PV/diesel/battery in ship power system," Applied Energy, Elsevier, vol. 158(C), pages 26-34.
    5. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    6. Li, Yinxiao & Wang, Yi & Chen, Qixin, 2020. "Study on the impacts of meteorological factors on distributed photovoltaic accommodation considering dynamic line parameters," Applied Energy, Elsevier, vol. 259(C).
    7. Wang, Ge & Zhang, Qi & Li, Hailong & McLellan, Benjamin C. & Chen, Siyuan & Li, Yan & Tian, Yulu, 2017. "Study on the promotion impact of demand response on distributed PV penetration by using non-cooperative game theoretical analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1869-1878.
    8. Mazhar Abbas & Eung-sang Kim & Seul-ki Kim & Yun-su Kim, 2016. "Comparative Analysis of Battery Behavior with Different Modes of Discharge for Optimal Capacity Sizing and BMS Operation," Energies, MDPI, vol. 9(10), pages 1-19, October.
    9. Jae-Won Chang & Gyu-Sub Lee & Hyeon-Jin Moon & Mark B. Glick & Seung-Il Moon, 2019. "Coordinated Frequency and State-of-Charge Control with Multi-Battery Energy Storage Systems and Diesel Generators in an Isolated Microgrid," Energies, MDPI, vol. 12(9), pages 1-16, April.
    10. Seneviratne, Chinthaka & Ozansoy, C., 2016. "Frequency response due to a large generator loss with the increasing penetration of wind/PV generation – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 659-668.
    11. Navid Shirzadi & Fuzhan Nasiri & Ursula Eicker, 2020. "Optimal Configuration and Sizing of an Integrated Renewable Energy System for Isolated and Grid-Connected Microgrids: The Case of an Urban University Campus," Energies, MDPI, vol. 13(14), pages 1-18, July.
    12. Abdul Rauf & Mahmoud Kassas & Muhammad Khalid, 2022. "Data-Driven Optimal Battery Storage Sizing for Grid-Connected Hybrid Distributed Generations Considering Solar and Wind Uncertainty," Sustainability, MDPI, vol. 14(17), pages 1-27, September.
    13. Huda, A.S.N. & Živanović, R., 2017. "Large-scale integration of distributed generation into distribution networks: Study objectives, review of models and computational tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 974-988.
    14. Jie Wu & Ying Fan & Yan Xia, 2017. "How Can China Achieve Its Nationally Determined Contribution Targets Combining Emissions Trading Scheme and Renewable Energy Policies?," Energies, MDPI, vol. 10(8), pages 1-20, August.
    15. Suparak Srita & Sakda Somkun & Tanakorn Kaewchum & Wattanapong Rakwichian & Peter Zacharias & Uthen Kamnarn & Jutturit Thongpron & Damrong Amorndechaphon & Matheepot Phattanasak, 2022. "Modeling, Simulation and Development of Grid-Connected Voltage Source Converter with Selective Harmonic Mitigation: HiL and Experimental Validations," Energies, MDPI, vol. 15(7), pages 1-28, March.
    16. Carlos Suazo-Martínez & Eduardo Pereira-Bonvallet & Rodrigo Palma-Behnke, 2014. "A Simulation Framework for Optimal Energy Storage Sizing," Energies, MDPI, vol. 7(5), pages 1-23, May.
    17. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose Ignacio Sarasua, 2020. "An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation," Energies, MDPI, vol. 13(13), pages 1-19, July.
    18. Liu, Liuchen & Zhu, Tong & Pan, Yu & Wang, Hai, 2017. "Multiple energy complementation based on distributed energy systems – Case study of Chongming county, China," Applied Energy, Elsevier, vol. 192(C), pages 329-336.
    19. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    20. Matheus Schramm Dall’Asta & Telles Brunelli Lazzarin, 2023. "Small-Signal Modeling and Stability Analysis of a Grid-Following Inverter with Inertia Emulation," Energies, MDPI, vol. 16(16), pages 1-28, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4555-:d:407984. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.