IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4529-d407245.html
   My bibliography  Save this article

A Modified ABC-SQP-Based Combined Approach for the Optimization of a Parallel Hybrid Electric Vehicle

Author

Listed:
  • S. N. Shivappriya

    (Kumaraguru College of Technology, Coimbatore, Tamil Nadu 641049, India)

  • S. Karthikeyan

    (M. Kumarasamy College of Engineering, Karur, Tamil Nadu 639113, India)

  • S. Prabu

    (Mahendra Institute of Technology, Namakkal, Tamil Nadu 637503, India)

  • R. Pérez de Prado

    (Telecommunication Engineering Department, University of Jaén, 23700 Jaén, Spain)

  • B. D. Parameshachari

    (GSSS Institute of Engineering and Technology for Women, Mysuru 570016, India)

Abstract

In this paper, an improved fuel consumption and emissions control strategy based on a mathematical and heuristic approach is presented to optimize Parallel Hybrid Electric Vehicles (HEVs). The well-known Sequential Quadratic Programming mathematical method (SQP-Hessian approach) presents some limitations to achieve fuel consumption and emissions control optimization, as it is not able to find the global minimum, and it generally shows efficient results in local exploitation searches. The usage of a combined Modified Artificial Bee Colony algorithm (MABC) with the SQP approach is proposed in this work to obtain better optimal solutions and overcome these limitations. The optimization is performed with boundary conditions, considering that the optimized vehicle performance has to satisfy Partnership for a New Generation of Vehicles (PNGV) constraints. The weighting factor of the vehicle’s performance parameters in the objective function is varied, and optimization is carried out for two different driving cycles, namely Federal Test Procedure (FTP) and Economic commission Europe—Extra Urban Driving Cycle (ECE-EUDC), using the MABC and MABC with SQP approaches. The MABC with SQP approach shows better performance in terms of fuel consumption and emissions than the pure heuristic approach for the considered vehicle with similar boundary conditions. Moreover, it does not present significant penalties for final battery charging and it offers an optimized size of the key vehicle’s components for different driving cycles.

Suggested Citation

  • S. N. Shivappriya & S. Karthikeyan & S. Prabu & R. Pérez de Prado & B. D. Parameshachari, 2020. "A Modified ABC-SQP-Based Combined Approach for the Optimization of a Parallel Hybrid Electric Vehicle," Energies, MDPI, vol. 13(17), pages 1-22, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4529-:d:407245
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4529/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4529/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Prabu Subramani & Ganesh Babu Rajendran & Jewel Sengupta & Rocío Pérez de Prado & Parameshachari Bidare Divakarachari, 2020. "A Block Bi-Diagonalization-Based Pre-Coding for Indoor Multiple-Input-Multiple-Output-Visible Light Communication System," Energies, MDPI, vol. 13(13), pages 1-16, July.
    2. Zhang, Pei & Yan, Fuwu & Du, Changqing, 2015. "A comprehensive analysis of energy management strategies for hybrid electric vehicles based on bibliometrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 88-104.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Zhongbao & Hu, Jian & Li, Yang & He, Hongwen & Li, Weihan & Sauer, Dirk Uwe, 2022. "Hierarchical soft measurement of load current and state of charge for future smart lithium-ion batteries," Applied Energy, Elsevier, vol. 307(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
    2. Imran, Muhammad & Haglind, Fredrik & Asim, Muhammad & Zeb Alvi, Jahan, 2018. "Recent research trends in organic Rankine cycle technology: A bibliometric approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 552-562.
    3. Lian, Renzong & Peng, Jiankun & Wu, Yuankai & Tan, Huachun & Zhang, Hailong, 2020. "Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle," Energy, Elsevier, vol. 197(C).
    4. Seyed Mahmoud Zanjirchi & Mina Rezaeian Abrishami & Negar Jalilian, 2019. "Four decades of fuzzy sets theory in operations management: application of life-cycle, bibliometrics and content analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 119(3), pages 1289-1309, June.
    5. Qi, Chunyang & Zhu, Yiwen & Song, Chuanxue & Yan, Guangfu & Xiao, Feng & Da wang, & Zhang, Xu & Cao, Jingwei & Song, Shixin, 2022. "Hierarchical reinforcement learning based energy management strategy for hybrid electric vehicle," Energy, Elsevier, vol. 238(PA).
    6. Yajing Gao & Shixiao Guo & Jiafeng Ren & Zheng Zhao & Ali Ehsan & Yanan Zheng, 2018. "An Electric Bus Power Consumption Model and Optimization of Charging Scheduling Concerning Multi-External Factors," Energies, MDPI, vol. 11(8), pages 1-17, August.
    7. Luis Miguel Pérez & Raul Oltra-Badenes & Juan Vicente Oltra Gutiérrez & Hermenegildo Gil-Gómez, 2020. "A Bibliometric Diagnosis and Analysis about Smart Cities," Sustainability, MDPI, vol. 12(16), pages 1-43, August.
    8. He, Hongwen & Han, Mo & Liu, Wei & Cao, Jianfei & Shi, Man & Zhou, Nana, 2022. "MPC-based longitudinal control strategy considering energy consumption for a dual-motor electric vehicle," Energy, Elsevier, vol. 253(C).
    9. Wang, Yue & Zeng, Xiaohua & Song, Dafeng & Yang, Nannan, 2019. "Optimal rule design methodology for energy management strategy of a power-split hybrid electric bus," Energy, Elsevier, vol. 185(C), pages 1086-1099.
    10. López-Ibarra, Jon Ander & Gaztañaga, Haizea & Saez-de-Ibarra, Andoni & Camblong, Haritza, 2020. "Plug-in hybrid electric buses total cost of ownership optimization at fleet level based on battery aging," Applied Energy, Elsevier, vol. 280(C).
    11. Nicu Bizon & Mihai Oproescu, 2018. "Experimental Comparison of Three Real-Time Optimization Strategies Applied to Renewable/FC-Based Hybrid Power Systems Based on Load-Following Control," Energies, MDPI, vol. 11(12), pages 1-32, December.
    12. Peng, Hujun & Li, Jianxiang & Löwenstein, Lars & Hameyer, Kay, 2020. "A scalable, causal, adaptive energy management strategy based on optimal control theory for a fuel cell hybrid railway vehicle," Applied Energy, Elsevier, vol. 267(C).
    13. Zewen Meng & Tiezhu Zhang & Hongxin Zhang & Qinghai Zhao & Jian Yang, 2021. "Energy Management Strategy for an Electromechanical-Hydraulic Coupled Power Electric Vehicle Considering the Optimal Speed Threshold," Energies, MDPI, vol. 14(17), pages 1-12, August.
    14. Dominković, D.F. & Weinand, J.M. & Scheller, F. & D'Andrea, M. & McKenna, R., 2022. "Reviewing two decades of energy system analysis with bibliometrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    15. Xu Chen & Guangdi Hu & Feng Guo & Mengqi Ye & Jingyuan Huang, 2020. "Switched Energy Management Strategy for Fuel Cell Hybrid Vehicle Based on Switch Network," Energies, MDPI, vol. 13(1), pages 1-23, January.
    16. Rishikesh Mahesh Bagwe & Andy Byerly & Euzeli Cipriano dos Santos & Zina Ben-Miled, 2019. "Adaptive Rule-Based Energy Management Strategy for a Parallel HEV," Energies, MDPI, vol. 12(23), pages 1-17, November.
    17. Bizon, Nicu, 2017. "Energy optimization of fuel cell system by using global extremum seeking algorithm," Applied Energy, Elsevier, vol. 206(C), pages 458-474.
    18. M. Sabri, M.F. & Danapalasingam, K.A. & Rahmat, M.F., 2016. "A review on hybrid electric vehicles architecture and energy management strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1433-1442.
    19. Shome, Samik & Hassan, M. Kabir & Verma, Sushma & Panigrahi, Tushar Ranjan, 2023. "Impact investment for sustainable development: A bibliometric analysis," International Review of Economics & Finance, Elsevier, vol. 84(C), pages 770-800.
    20. Qicheng Xue & Xin Zhang & Teng Teng & Jibao Zhang & Zhiyuan Feng & Qinyang Lv, 2020. "A Comprehensive Review on Classification, Energy Management Strategy, and Control Algorithm for Hybrid Electric Vehicles," Energies, MDPI, vol. 13(20), pages 1-30, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4529-:d:407245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.