IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i17p4358-d403158.html
   My bibliography  Save this article

A Study on the Development of Machine-Learning Based Load Transfer Detection Algorithm for Distribution Planning

Author

Listed:
  • Jun-Hyeok Kim

    (Department of Electrical and Electronic Engineering, Sungkyunkwan University, Suwon 16419, Korea
    Smart Power Distribution Laboratory, Korea Electric Power Corporation Research Institute, Daejeon 34056, Korea)

  • Byung-Sung Lee

    (Smart Power Distribution Laboratory, Korea Electric Power Corporation Research Institute, Daejeon 34056, Korea)

  • Chul-Hwan Kim

    (Department of Electrical and Electronic Engineering, Sungkyunkwan University, Suwon 16419, Korea)

Abstract

Distribution planning refers to the act of estimating the risks of distribution systems that may arise in the future and establishing investment plans to cope with them. Forecasted loads are one of the most typical variables used to analyze the risk of the distribution system, thus the efficiency of distribution planning may vary depending on its accuracy. For these reasons, a lot of studies are also being conducted to perform load prediction by incorporating the latest methods, such as machine learning (ML). However, the unchangeable fact is that no matter what prediction method is used, the accuracy and reliability of the predicted load can vary depending on the reliability of the data used. In particular, the detection of temporary load increases, due to load transfer that can occur frequently in the distribution system are essential for securing high-quality data. Therefore, in this study, a LSTM (Long Short-Term Memory) based load transfer detection model was proposed, and the appropriateness and reliability of the proposed method were analyzed by comparing actual planned load transfer data with the estimated load transfer results from the proposed model. It was also shown that the proposed model can improve the efficiency and reliability of the distribution planning by reasonably removing load variations, due to load transfer.

Suggested Citation

  • Jun-Hyeok Kim & Byung-Sung Lee & Chul-Hwan Kim, 2020. "A Study on the Development of Machine-Learning Based Load Transfer Detection Algorithm for Distribution Planning," Energies, MDPI, vol. 13(17), pages 1-12, August.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4358-:d:403158
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/17/4358/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/17/4358/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanbing Lin & Hongyuan Luo & Deyun Wang & Haixiang Guo & Kejun Zhu, 2017. "An Ensemble Model Based on Machine Learning Methods and Data Preprocessing for Short-Term Electric Load Forecasting," Energies, MDPI, vol. 10(8), pages 1-16, August.
    2. Fan, Cheng & Xiao, Fu & Zhao, Yang, 2017. "A short-term building cooling load prediction method using deep learning algorithms," Applied Energy, Elsevier, vol. 195(C), pages 222-233.
    3. Taylor, James W., 2010. "Triple seasonal methods for short-term electricity demand forecasting," European Journal of Operational Research, Elsevier, vol. 204(1), pages 139-152, July.
    4. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
    5. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2019. "Single and Multi-Sequence Deep Learning Models for Short and Medium Term Electric Load Forecasting," Energies, MDPI, vol. 12(1), pages 1-21, January.
    6. J W Taylor, 2003. "Short-term electricity demand forecasting using double seasonal exponential smoothing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 799-805, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuejun Zheng & Shaorong Wang & Zia Ullah & Mengmeng Xiao & Chang Ye & Zhangping Lei, 2021. "A Novel Optimization Method for a Multi-Year Planning Scheme of an Active Distribution Network in a Large Planning Zone," Energies, MDPI, vol. 14(12), pages 1-16, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
    2. Clements, A.E. & Hurn, A.S. & Li, Z., 2016. "Forecasting day-ahead electricity load using a multiple equation time series approach," European Journal of Operational Research, Elsevier, vol. 251(2), pages 522-530.
    3. Goutam Dutta & Krishnendranath Mitra, 2017. "A literature review on dynamic pricing of electricity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1131-1145, October.
    4. Óscar Trull & J. Carlos García-Díaz & Alicia Troncoso, 2019. "Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter," Energies, MDPI, vol. 12(6), pages 1-16, March.
    5. Feng, Yonghan & Ryan, Sarah M., 2016. "Day-ahead hourly electricity load modeling by functional regression," Applied Energy, Elsevier, vol. 170(C), pages 455-465.
    6. Ali K k & Erg n Y kseltan & Mustafa Hekimo lu & Esra Agca Aktunc & Ahmet Y cekaya & Ay e Bilge, 2022. "Forecasting Hourly Electricity Demand Under COVID-19 Restrictions," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 73-85.
    7. Mauro Bernardi & Francesco Lisi, 2020. "Point and Interval Forecasting of Zonal Electricity Prices and Demand Using Heteroscedastic Models: The IPEX Case," Energies, MDPI, vol. 13(23), pages 1-34, November.
    8. Mohan, Neethu & Soman, K.P. & Sachin Kumar, S., 2018. "A data-driven strategy for short-term electric load forecasting using dynamic mode decomposition model," Applied Energy, Elsevier, vol. 232(C), pages 229-244.
    9. Arora, Siddharth & Taylor, James W., 2016. "Forecasting electricity smart meter data using conditional kernel density estimation," Omega, Elsevier, vol. 59(PA), pages 47-59.
    10. Chethana Dharmawardane & Ville Sillanpää & Jan Holmström, 2021. "High-frequency forecasting for grocery point-of-sales: intervention in practice and theoretical implications for operational design," Operations Management Research, Springer, vol. 14(1), pages 38-60, June.
    11. Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
    12. Heung-gu Son & Yunsun Kim & Sahm Kim, 2020. "Time Series Clustering of Electricity Demand for Industrial Areas on Smart Grid," Energies, MDPI, vol. 13(9), pages 1-14, May.
    13. Ahmed Ismail & Mustafa Baysal, 2023. "Dynamic Pricing Based on Demand Response Using Actor–Critic Agent Reinforcement Learning," Energies, MDPI, vol. 16(14), pages 1-19, July.
    14. Oscar Trull & J. Carlos Garc'ia-D'iaz & Angel Peir'o-Signes, 2024. "mshw, a forecasting library to predict short-term electricity demand based on multiple seasonal Holt-Winters," Papers 2402.10982, arXiv.org.
    15. Guixiang Xue & Yu Pan & Tao Lin & Jiancai Song & Chengying Qi & Zhipan Wang, 2019. "District Heating Load Prediction Algorithm Based on Feature Fusion LSTM Model," Energies, MDPI, vol. 12(11), pages 1-21, June.
    16. Salam, Abdulwahed & El Hibaoui, Abdelaaziz, 2021. "Energy consumption prediction model with deep inception residual network inspiration and LSTM," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 97-109.
    17. Behm, Svenia & Haupt, Harry, 2020. "Predictability of hourly nitrogen dioxide concentration," Ecological Modelling, Elsevier, vol. 428(C).
    18. Kim, Myung Suk, 2013. "Modeling special-day effects for forecasting intraday electricity demand," European Journal of Operational Research, Elsevier, vol. 230(1), pages 170-180.
    19. Oscar Trull & Angel Peiró-Signes & J. Carlos García-Díaz, 2019. "Electricity Forecasting Improvement in a Destination Using Tourism Indicators," Sustainability, MDPI, vol. 11(13), pages 1-16, July.
    20. Akylas Stratigakos & Athanasios Bachoumis & Vasiliki Vita & Elias Zafiropoulos, 2021. "Short-Term Net Load Forecasting with Singular Spectrum Analysis and LSTM Neural Networks," Energies, MDPI, vol. 14(14), pages 1-13, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:17:p:4358-:d:403158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.